基于人工神经网络的时间序列预测动态决策模型

Yuehui Chen, F. Chen, Qiang Wu
{"title":"基于人工神经网络的时间序列预测动态决策模型","authors":"Yuehui Chen, F. Chen, Qiang Wu","doi":"10.1109/IJCNN.2007.4371041","DOIUrl":null,"url":null,"abstract":"The forecasting models for time series forecasting using computational intelligence such as artificial neural networks (ANNs) , genetic programming (GP) and gene expression programming (GEP), especially hybrid particle swarm optimization (PSO) algorithm and artificial neural networks (ANNs) have achieved favorable results. However, these studies, have assumed a static environment. This paper investigates the development of a new dynamic decision forecasting model. The input size of the ANNs will be dynamical changed in the process of evolution. Application results prove the higher precision and generalization capacity obtained by this new method than the static models.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Artificial Neural Networks Based Dynamic Decision Model for Time-Series Forecasting\",\"authors\":\"Yuehui Chen, F. Chen, Qiang Wu\",\"doi\":\"10.1109/IJCNN.2007.4371041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting models for time series forecasting using computational intelligence such as artificial neural networks (ANNs) , genetic programming (GP) and gene expression programming (GEP), especially hybrid particle swarm optimization (PSO) algorithm and artificial neural networks (ANNs) have achieved favorable results. However, these studies, have assumed a static environment. This paper investigates the development of a new dynamic decision forecasting model. The input size of the ANNs will be dynamical changed in the process of evolution. Application results prove the higher precision and generalization capacity obtained by this new method than the static models.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用人工神经网络(ann)、遗传规划(GP)和基因表达规划(GEP)等计算智能进行时间序列预测的预测模型,特别是混合粒子群优化(PSO)算法和人工神经网络(ann)已经取得了良好的效果。然而,这些研究都假设了一个静态的环境。本文研究了一种新的动态决策预测模型的发展。在进化过程中,人工神经网络的输入大小会发生动态变化。应用结果表明,该方法比静态模型具有更高的精度和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Neural Networks Based Dynamic Decision Model for Time-Series Forecasting
The forecasting models for time series forecasting using computational intelligence such as artificial neural networks (ANNs) , genetic programming (GP) and gene expression programming (GEP), especially hybrid particle swarm optimization (PSO) algorithm and artificial neural networks (ANNs) have achieved favorable results. However, these studies, have assumed a static environment. This paper investigates the development of a new dynamic decision forecasting model. The input size of the ANNs will be dynamical changed in the process of evolution. Application results prove the higher precision and generalization capacity obtained by this new method than the static models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信