基于自适应动态规划和深度强化学习的无人水面车辆控制

A. García, David Barragan-Alcantar, Ivana Collado-Gonzalez, Leonardo Garrido
{"title":"基于自适应动态规划和深度强化学习的无人水面车辆控制","authors":"A. García, David Barragan-Alcantar, Ivana Collado-Gonzalez, Leonardo Garrido","doi":"10.1145/3417188.3417194","DOIUrl":null,"url":null,"abstract":"This paper presents a low-level controller for an unmanned surface vehicle based on Adaptive Dynamic Programming (ADP) and deep reinforcement learning (DRL). The model-based algorithm Back-propagation Through Time and a simulation of the mathematical model of the vessel are implemented to train a deep neural network to drive the surge speed and yaw dynamics. The controller presents successful simulation results validating the feasibility of the proposed strategy and contributes to the diversity of validated applications of ADP and DRL control strategies.","PeriodicalId":373913,"journal":{"name":"Proceedings of the 2020 4th International Conference on Deep Learning Technologies","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of an Unmanned Surface Vehicle Based on Adaptive Dynamic Programming and Deep Reinforcement Learning\",\"authors\":\"A. García, David Barragan-Alcantar, Ivana Collado-Gonzalez, Leonardo Garrido\",\"doi\":\"10.1145/3417188.3417194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low-level controller for an unmanned surface vehicle based on Adaptive Dynamic Programming (ADP) and deep reinforcement learning (DRL). The model-based algorithm Back-propagation Through Time and a simulation of the mathematical model of the vessel are implemented to train a deep neural network to drive the surge speed and yaw dynamics. The controller presents successful simulation results validating the feasibility of the proposed strategy and contributes to the diversity of validated applications of ADP and DRL control strategies.\",\"PeriodicalId\":373913,\"journal\":{\"name\":\"Proceedings of the 2020 4th International Conference on Deep Learning Technologies\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 4th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3417188.3417194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 4th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3417188.3417194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于自适应动态规划(ADP)和深度强化学习(DRL)的无人水面车辆低级控制器。利用基于模型的时间反向传播算法和船舶数学模型的仿真来训练深度神经网络来驱动浪涌速度和偏航动态。该控制器给出了成功的仿真结果,验证了所提出策略的可行性,并有助于ADP和DRL控制策略的验证应用的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of an Unmanned Surface Vehicle Based on Adaptive Dynamic Programming and Deep Reinforcement Learning
This paper presents a low-level controller for an unmanned surface vehicle based on Adaptive Dynamic Programming (ADP) and deep reinforcement learning (DRL). The model-based algorithm Back-propagation Through Time and a simulation of the mathematical model of the vessel are implemented to train a deep neural network to drive the surge speed and yaw dynamics. The controller presents successful simulation results validating the feasibility of the proposed strategy and contributes to the diversity of validated applications of ADP and DRL control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信