A. Foong, Jason M. Fung, D. Newell, S. Abraham, Peggy Irelan, Alex A. Lopez-Estrada
{"title":"网络处理中处理器亲和性的体系结构表征","authors":"A. Foong, Jason M. Fung, D. Newell, S. Abraham, Peggy Irelan, Alex A. Lopez-Estrada","doi":"10.1109/ISPASS.2005.1430575","DOIUrl":null,"url":null,"abstract":"Network protocol stacks, in particular TCP/IP software implementations, are known for its inability to scale well in general-purpose monolithic operating systems (OS) for SMP. Previous researchers have experimented with affinitizing processes/thread, as well as interrupts from devices, to specific processors in a SMP system. However, general purpose operating systems have minimal consideration of user-defined affinity in their schedulers. Our goal is to expose the full potential of affinity by in-depth characterization of the reasons behind performance gains. We conducted an experimental study of TCP performance under various affinity modes on IA-based servers. Results showed that interrupt affinity alone provided a throughput gain of up to 25%, and combined thread/process and interrupt affinity can achieve gains of 30%. In particular, calling out the impact of affinity on machine clears (in addition to cache misses) is characterization that has not been done before","PeriodicalId":230669,"journal":{"name":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Architectural Characterization of Processor Affinity in Network Processing\",\"authors\":\"A. Foong, Jason M. Fung, D. Newell, S. Abraham, Peggy Irelan, Alex A. Lopez-Estrada\",\"doi\":\"10.1109/ISPASS.2005.1430575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network protocol stacks, in particular TCP/IP software implementations, are known for its inability to scale well in general-purpose monolithic operating systems (OS) for SMP. Previous researchers have experimented with affinitizing processes/thread, as well as interrupts from devices, to specific processors in a SMP system. However, general purpose operating systems have minimal consideration of user-defined affinity in their schedulers. Our goal is to expose the full potential of affinity by in-depth characterization of the reasons behind performance gains. We conducted an experimental study of TCP performance under various affinity modes on IA-based servers. Results showed that interrupt affinity alone provided a throughput gain of up to 25%, and combined thread/process and interrupt affinity can achieve gains of 30%. In particular, calling out the impact of affinity on machine clears (in addition to cache misses) is characterization that has not been done before\",\"PeriodicalId\":230669,\"journal\":{\"name\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2005.1430575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2005.1430575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architectural Characterization of Processor Affinity in Network Processing
Network protocol stacks, in particular TCP/IP software implementations, are known for its inability to scale well in general-purpose monolithic operating systems (OS) for SMP. Previous researchers have experimented with affinitizing processes/thread, as well as interrupts from devices, to specific processors in a SMP system. However, general purpose operating systems have minimal consideration of user-defined affinity in their schedulers. Our goal is to expose the full potential of affinity by in-depth characterization of the reasons behind performance gains. We conducted an experimental study of TCP performance under various affinity modes on IA-based servers. Results showed that interrupt affinity alone provided a throughput gain of up to 25%, and combined thread/process and interrupt affinity can achieve gains of 30%. In particular, calling out the impact of affinity on machine clears (in addition to cache misses) is characterization that has not been done before