Syed Moshfeq Salaken, A. Khosravi, S. Nahavandi, Dongrui Wu
{"title":"不同初始化对EKM算法的影响","authors":"Syed Moshfeq Salaken, A. Khosravi, S. Nahavandi, Dongrui Wu","doi":"10.1109/FUZZ-IEEE.2015.7337810","DOIUrl":null,"url":null,"abstract":"As an integral part of interval type-2 fuzzy logic system (IT2FLS), type reduction (TR) plays a vital role in determining the performance of IT2FLS. Out of many type reduction algorithms, only Karnik-Mendel type TR algorithms capture the essence of interval type-2 fuzzy sets in type reduction. Enhanced Karnik-Mendel (EKM) algorithm is the most commonly used TR algorithm. In this work, we propose three new initializations for EKM algorithm. It is shown they are performing better than EKM and one of the proposed initializations significantly outperforms others. The performance gain can be upto 40% as per comprehensive simulation results demonstrated in this paper. Our findings are justified by computational time savings and iteration requirement for switch point search.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"118 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of different initializations on EKM algorithm\",\"authors\":\"Syed Moshfeq Salaken, A. Khosravi, S. Nahavandi, Dongrui Wu\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an integral part of interval type-2 fuzzy logic system (IT2FLS), type reduction (TR) plays a vital role in determining the performance of IT2FLS. Out of many type reduction algorithms, only Karnik-Mendel type TR algorithms capture the essence of interval type-2 fuzzy sets in type reduction. Enhanced Karnik-Mendel (EKM) algorithm is the most commonly used TR algorithm. In this work, we propose three new initializations for EKM algorithm. It is shown they are performing better than EKM and one of the proposed initializations significantly outperforms others. The performance gain can be upto 40% as per comprehensive simulation results demonstrated in this paper. Our findings are justified by computational time savings and iteration requirement for switch point search.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"118 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of different initializations on EKM algorithm
As an integral part of interval type-2 fuzzy logic system (IT2FLS), type reduction (TR) plays a vital role in determining the performance of IT2FLS. Out of many type reduction algorithms, only Karnik-Mendel type TR algorithms capture the essence of interval type-2 fuzzy sets in type reduction. Enhanced Karnik-Mendel (EKM) algorithm is the most commonly used TR algorithm. In this work, we propose three new initializations for EKM algorithm. It is shown they are performing better than EKM and one of the proposed initializations significantly outperforms others. The performance gain can be upto 40% as per comprehensive simulation results demonstrated in this paper. Our findings are justified by computational time savings and iteration requirement for switch point search.