大规模TSP交互优化的多世界智能遗传算法

Yoshitaka Sakurai, T. Onoyama, S. Kubota, Yoshihiro Nakamura, S. Tsuruta
{"title":"大规模TSP交互优化的多世界智能遗传算法","authors":"Yoshitaka Sakurai, T. Onoyama, S. Kubota, Yoshihiro Nakamura, S. Tsuruta","doi":"10.1109/IRI.2006.252421","DOIUrl":null,"url":null,"abstract":"To optimize large-scale distribution networks, solving about 1000 middle scale (around 40 cities) TSPs (traveling salesman problems) within an interactive length of time (max. 30 seconds) is required. Yet, expert-level (less than 3% of errors) accuracy is necessary. To realize the above requirements, a multi-world intelligent GA method was developed. This method combines a high-speed GA with an intelligent GA holding problem-oriented knowledge that is effective for some special location patterns. If conventional methods were applied, solutions for more than 20 out of 20,000 cases were below expert-level accuracy. However, the developed method could solve all of 20,000 cases at expert-level","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A Multi-world Intelligent Genetic Algorithm to Interactively Optimize Large-scale TSP\",\"authors\":\"Yoshitaka Sakurai, T. Onoyama, S. Kubota, Yoshihiro Nakamura, S. Tsuruta\",\"doi\":\"10.1109/IRI.2006.252421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To optimize large-scale distribution networks, solving about 1000 middle scale (around 40 cities) TSPs (traveling salesman problems) within an interactive length of time (max. 30 seconds) is required. Yet, expert-level (less than 3% of errors) accuracy is necessary. To realize the above requirements, a multi-world intelligent GA method was developed. This method combines a high-speed GA with an intelligent GA holding problem-oriented knowledge that is effective for some special location patterns. If conventional methods were applied, solutions for more than 20 out of 20,000 cases were below expert-level accuracy. However, the developed method could solve all of 20,000 cases at expert-level\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

优化大规模分销网络,在交互时间长度(最大数小时)内解决约1000个中等规模(约40个城市)的tsp(旅行商问题)。30秒)是必需的。然而,专家级(少于3%的错误)的准确性是必要的。为实现上述要求,提出了一种多世界智能遗传算法。该方法将高速遗传算法与具有问题导向知识的智能遗传算法相结合,对某些特殊的定位模式有效。如果采用传统方法,20000个案例中有超过20个的解决方案低于专家水平的准确性。然而,所开发的方法可以在专家水平上解决所有20,000个案例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-world Intelligent Genetic Algorithm to Interactively Optimize Large-scale TSP
To optimize large-scale distribution networks, solving about 1000 middle scale (around 40 cities) TSPs (traveling salesman problems) within an interactive length of time (max. 30 seconds) is required. Yet, expert-level (less than 3% of errors) accuracy is necessary. To realize the above requirements, a multi-world intelligent GA method was developed. This method combines a high-speed GA with an intelligent GA holding problem-oriented knowledge that is effective for some special location patterns. If conventional methods were applied, solutions for more than 20 out of 20,000 cases were below expert-level accuracy. However, the developed method could solve all of 20,000 cases at expert-level
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信