{"title":"协调地标和关卡集","authors":"Pierre Maurel, R. Keriven, O. Faugeras","doi":"10.1109/ICPR.2006.979","DOIUrl":null,"url":null,"abstract":"Shape warping is a key problem in statistical shape analysis. This paper proposes a framework for geometric shape warping based on both shape distances and landmarks. Our method is compatible with implicit representations and a matching between shape surfaces is provided at no additional cost. It is, to our knowledge, the first time that landmarks and shape distances are reconciled in a pure geometric level set framework. The feasibility of the method is demonstrated with two- and three-dimensional examples. Combining shape distance and landmarks, our approach reveals to need only a small number of landmarks to obtain improvements on both warping and matching","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reconciling Landmarks and Level Sets\",\"authors\":\"Pierre Maurel, R. Keriven, O. Faugeras\",\"doi\":\"10.1109/ICPR.2006.979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape warping is a key problem in statistical shape analysis. This paper proposes a framework for geometric shape warping based on both shape distances and landmarks. Our method is compatible with implicit representations and a matching between shape surfaces is provided at no additional cost. It is, to our knowledge, the first time that landmarks and shape distances are reconciled in a pure geometric level set framework. The feasibility of the method is demonstrated with two- and three-dimensional examples. Combining shape distance and landmarks, our approach reveals to need only a small number of landmarks to obtain improvements on both warping and matching\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shape warping is a key problem in statistical shape analysis. This paper proposes a framework for geometric shape warping based on both shape distances and landmarks. Our method is compatible with implicit representations and a matching between shape surfaces is provided at no additional cost. It is, to our knowledge, the first time that landmarks and shape distances are reconciled in a pure geometric level set framework. The feasibility of the method is demonstrated with two- and three-dimensional examples. Combining shape distance and landmarks, our approach reveals to need only a small number of landmarks to obtain improvements on both warping and matching