从需求中自动识别组件状态转换模型元素

Kaushik Madala, Danielle Gaither, Rodney D. Nielsen, Hyunsook Do
{"title":"从需求中自动识别组件状态转换模型元素","authors":"Kaushik Madala, Danielle Gaither, Rodney D. Nielsen, Hyunsook Do","doi":"10.1109/REW.2017.73","DOIUrl":null,"url":null,"abstract":"Most system requirements are currently written in common, i.e., unstructured, natural language, which existing requirements analysis tools are poorly equipped to handle. Extracting mentions of model elements from common natural language requirements is a first step toward the automation of model-driven requirements analysis. We propose an approach in which we identify mentions of elements of a component state transition (CST) model in natural language requirements by creating classifiers using a recurrent neural network with long short-term memory. To evaluate our approach, we performed a study on a pacemaker system requirements document, and the results show promising directions for future research.","PeriodicalId":382958,"journal":{"name":"2017 IEEE 25th International Requirements Engineering Conference Workshops (REW)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automated Identification of Component State Transition Model Elements from Requirements\",\"authors\":\"Kaushik Madala, Danielle Gaither, Rodney D. Nielsen, Hyunsook Do\",\"doi\":\"10.1109/REW.2017.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most system requirements are currently written in common, i.e., unstructured, natural language, which existing requirements analysis tools are poorly equipped to handle. Extracting mentions of model elements from common natural language requirements is a first step toward the automation of model-driven requirements analysis. We propose an approach in which we identify mentions of elements of a component state transition (CST) model in natural language requirements by creating classifiers using a recurrent neural network with long short-term memory. To evaluate our approach, we performed a study on a pacemaker system requirements document, and the results show promising directions for future research.\",\"PeriodicalId\":382958,\"journal\":{\"name\":\"2017 IEEE 25th International Requirements Engineering Conference Workshops (REW)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 25th International Requirements Engineering Conference Workshops (REW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REW.2017.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Requirements Engineering Conference Workshops (REW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REW.2017.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

大多数系统需求目前都是用公共语言编写的,也就是说,用非结构化的自然语言编写的,现有的需求分析工具很难处理这些语言。从公共自然语言需求中提取模型元素的提及是实现模型驱动需求分析自动化的第一步。我们提出了一种方法,通过使用具有长短期记忆的递归神经网络创建分类器,我们识别自然语言需求中组件状态转换(CST)模型中元素的提及。为了评估我们的方法,我们对起搏器系统需求文档进行了研究,结果显示了未来研究的有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Identification of Component State Transition Model Elements from Requirements
Most system requirements are currently written in common, i.e., unstructured, natural language, which existing requirements analysis tools are poorly equipped to handle. Extracting mentions of model elements from common natural language requirements is a first step toward the automation of model-driven requirements analysis. We propose an approach in which we identify mentions of elements of a component state transition (CST) model in natural language requirements by creating classifiers using a recurrent neural network with long short-term memory. To evaluate our approach, we performed a study on a pacemaker system requirements document, and the results show promising directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信