优化深度瓶颈特征提取

Quoc Bao Nguyen, Jonas Gehring, Kevin Kilgour, A. Waibel
{"title":"优化深度瓶颈特征提取","authors":"Quoc Bao Nguyen, Jonas Gehring, Kevin Kilgour, A. Waibel","doi":"10.1109/RIVF.2013.6719885","DOIUrl":null,"url":null,"abstract":"We investigate several optimizations to a recently published architecture for extracting bottleneck features for large-vocabulary speech recognition with deep neural networks. We are able to improve recognition performance of first-pass systems from a 12% relative word error rate reduction reported previously to 21%, compared to MFCC baselines on a Tagalog conversational telephone speech corpus. This is achieved by using different input features, training the network to predict context-dependent targets, employing an efficient learning rate schedule and varying several architectural details. Evaluations on two larger German and French speech transcription tasks show that the optimizations proposed are universally applicable and yield comparable gains on other corpora (19.9% and 22.8%, respectively).","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimizing deep bottleneck feature extraction\",\"authors\":\"Quoc Bao Nguyen, Jonas Gehring, Kevin Kilgour, A. Waibel\",\"doi\":\"10.1109/RIVF.2013.6719885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate several optimizations to a recently published architecture for extracting bottleneck features for large-vocabulary speech recognition with deep neural networks. We are able to improve recognition performance of first-pass systems from a 12% relative word error rate reduction reported previously to 21%, compared to MFCC baselines on a Tagalog conversational telephone speech corpus. This is achieved by using different input features, training the network to predict context-dependent targets, employing an efficient learning rate schedule and varying several architectural details. Evaluations on two larger German and French speech transcription tasks show that the optimizations proposed are universally applicable and yield comparable gains on other corpora (19.9% and 22.8%, respectively).\",\"PeriodicalId\":121216,\"journal\":{\"name\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2013.6719885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们研究了最近发表的一种架构的几个优化,用于深度神经网络大词汇量语音识别的瓶颈特征提取。我们能够将首遍系统的识别性能从之前报道的12%的相对单词错误率降低到21%,与MFCC基线在他加洛语会话电话语音语料库上相比。这是通过使用不同的输入特征,训练网络来预测与上下文相关的目标,采用有效的学习率计划和改变几个架构细节来实现的。对两个较大的德语和法语语音转录任务的评估表明,所提出的优化是普遍适用的,并且在其他语料库上产生了相当的收益(分别为19.9%和22.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing deep bottleneck feature extraction
We investigate several optimizations to a recently published architecture for extracting bottleneck features for large-vocabulary speech recognition with deep neural networks. We are able to improve recognition performance of first-pass systems from a 12% relative word error rate reduction reported previously to 21%, compared to MFCC baselines on a Tagalog conversational telephone speech corpus. This is achieved by using different input features, training the network to predict context-dependent targets, employing an efficient learning rate schedule and varying several architectural details. Evaluations on two larger German and French speech transcription tasks show that the optimizations proposed are universally applicable and yield comparable gains on other corpora (19.9% and 22.8%, respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信