SEIQR类型的关于白喉传播疾病的数学模型

Saltina Saltina, Novianita Achmad, Resmawan Resmawan, Agusyarif Rezka Nuha
{"title":"SEIQR类型的关于白喉传播疾病的数学模型","authors":"Saltina Saltina, Novianita Achmad, Resmawan Resmawan, Agusyarif Rezka Nuha","doi":"10.19184/mims.v22i1.29337","DOIUrl":null,"url":null,"abstract":"The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number ()  and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if   and ,  respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria  transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulationMSC2020: 37A99, 37A10, 37C10","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI\",\"authors\":\"Saltina Saltina, Novianita Achmad, Resmawan Resmawan, Agusyarif Rezka Nuha\",\"doi\":\"10.19184/mims.v22i1.29337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number ()  and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if   and ,  respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria  transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulationMSC2020: 37A99, 37A10, 37C10\",\"PeriodicalId\":264607,\"journal\":{\"name\":\"Majalah Ilmiah Matematika dan Statistika\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Ilmiah Matematika dan Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/mims.v22i1.29337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v22i1.29337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了白喉传播的数学模型。白喉是一种喉咙和上呼吸道的感染,由一种叫做棒状杆菌的细菌引起。通过加入潜伏种群和感染引起的死亡参数建立模型。本研究的目的是建立数学模型,分析平衡点的稳定性,并解释SEIQR数学模型在白喉传播中的模拟。从所构建的模型来看,存在菌群繁殖数()和两个平衡点,即无病平衡点和地方病平衡点分别为稳定点。此外,还进行了数值模拟,以确定白喉传播的动力学。仿真结果表明,随着疫苗接种率和个体接种率的增加,感染将逐渐远离人群。简而言之,通过提高疫苗接种率可以预防白喉传播。关键词:基本繁殖数,白喉,平衡点,数学模型,数值模拟msc2020: 37A99, 37A10, 37C10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI
The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number ()  and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if   and ,  respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria  transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulationMSC2020: 37A99, 37A10, 37C10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信