从投影完成联合PMF:一种低秩耦合张量分解方法

Nikos Kargas, N. Sidiropoulos
{"title":"从投影完成联合PMF:一种低秩耦合张量分解方法","authors":"Nikos Kargas, N. Sidiropoulos","doi":"10.1109/ITA.2017.8023474","DOIUrl":null,"url":null,"abstract":"There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Completing a joint PMF from projections: A low-rank coupled tensor factorization approach\",\"authors\":\"Nikos Kargas, N. Sidiropoulos\",\"doi\":\"10.1109/ITA.2017.8023474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.\",\"PeriodicalId\":305510,\"journal\":{\"name\":\"2017 Information Theory and Applications Workshop (ITA)\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2017.8023474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近有相当大的兴趣在完成一个低秩矩阵或张量,只给它的一小部分(或少数线性组合)的条目。相关方法在机器学习下的推荐系统领域取得了相当大的成功。从统计估计的角度来看,黄金标准是获得所有相关随机变量的联合概率分布,从中可以很容易地推导出任何理想的最优估计量。在实践中,高维联合分布很难估计,只有对低维投影的估计是可用的。我们证明了使用耦合低秩张量分解从低阶边缘pmf中识别高阶联合pmf是可能的。该方法的特点是当全联合PMF秩足够低时保证可辨识性,否则是有效的逼近。我们提供了一种算法方法来计算搜索因子,并以评级预测为例说明了我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completing a joint PMF from projections: A low-rank coupled tensor factorization approach
There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信