{"title":"WDM星型网络的最小延迟流量疏导","authors":"Hongsik Choi, Nikhil Garg, Hyeong-Ah Choi","doi":"10.1117/12.533184","DOIUrl":null,"url":null,"abstract":"All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimal-delay traffic grooming for WDM star networks\",\"authors\":\"Hongsik Choi, Nikhil Garg, Hyeong-Ah Choi\",\"doi\":\"10.1117/12.533184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.\",\"PeriodicalId\":187370,\"journal\":{\"name\":\"OptiComm: Optical Networking and Communications Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OptiComm: Optical Networking and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.533184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal-delay traffic grooming for WDM star networks
All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.