存储系统的智能后台调度程序

Maher Kachmar, D. Kaeli
{"title":"存储系统的智能后台调度程序","authors":"Maher Kachmar, D. Kaeli","doi":"10.1109/MASCOTS50786.2020.9285967","DOIUrl":null,"url":null,"abstract":"In today's enterprise storage systems, supported data services such as snapshot delete or drive rebuild can result in tremendous performance overhead if executed inline along with heavy foreground IO, often leading to missing Service Level Objectives (SLOs). Typical storage system applications such as Virtual Desktop Infrastructure (VDI) or web services follow a repetitive high/low workload pattern that can be learned and forecasted. We propose a priority-based background scheduler that learns this pattern and allows storage systems to maintain peak performance and meet service level objectives (SLOs) while supporting a number of data services. When foreground IO demand intensifies, system resources are dedicated to service foreground IO requests and any background processing that can be deferred are recorded to be processed in future idle cycles as long as our forecaster predicts that the storage pool has remaining capacity. The smart background scheduler adopts a resource partitioning model that allows both foreground and background IO to execute together as long as foreground IOs are not impacted, harnessing any free cycles to clear background debt. Using traces from VDI and web services applications, we show how our technique can out-perform a static policy that sets fixed limits on the deferred background debt and reduces SLO violations from 54.6% (when using a fixed background debt watermark), to only 6.2 % when dynamically adjusted by our smart background scheduler.","PeriodicalId":272614,"journal":{"name":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Smart Background Scheduler for Storage Systems\",\"authors\":\"Maher Kachmar, D. Kaeli\",\"doi\":\"10.1109/MASCOTS50786.2020.9285967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's enterprise storage systems, supported data services such as snapshot delete or drive rebuild can result in tremendous performance overhead if executed inline along with heavy foreground IO, often leading to missing Service Level Objectives (SLOs). Typical storage system applications such as Virtual Desktop Infrastructure (VDI) or web services follow a repetitive high/low workload pattern that can be learned and forecasted. We propose a priority-based background scheduler that learns this pattern and allows storage systems to maintain peak performance and meet service level objectives (SLOs) while supporting a number of data services. When foreground IO demand intensifies, system resources are dedicated to service foreground IO requests and any background processing that can be deferred are recorded to be processed in future idle cycles as long as our forecaster predicts that the storage pool has remaining capacity. The smart background scheduler adopts a resource partitioning model that allows both foreground and background IO to execute together as long as foreground IOs are not impacted, harnessing any free cycles to clear background debt. Using traces from VDI and web services applications, we show how our technique can out-perform a static policy that sets fixed limits on the deferred background debt and reduces SLO violations from 54.6% (when using a fixed background debt watermark), to only 6.2 % when dynamically adjusted by our smart background scheduler.\",\"PeriodicalId\":272614,\"journal\":{\"name\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS50786.2020.9285967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS50786.2020.9285967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的企业存储系统中,受支持的数据服务(如快照删除或驱动器重建)如果与繁重的前台IO一起内联执行,可能会导致巨大的性能开销,经常导致丢失服务水平目标(Service Level Objectives, slo)。典型的存储系统应用程序,如虚拟桌面基础设施(Virtual Desktop Infrastructure, VDI)或web服务,遵循可学习和预测的重复高/低工作负载模式。我们提出了一个基于优先级的后台调度器,它可以学习这种模式,并允许存储系统在支持多种数据服务的同时保持峰值性能并满足服务级别目标(slo)。当前台IO需求增加时,系统资源专用于服务前台IO请求,只要我们的预测器预测存储池有剩余容量,任何可以延迟的后台处理都会被记录下来,以便在未来的空闲周期中处理。智能后台调度程序采用资源分区模型,允许前台和后台IO一起执行,只要前台IO不受影响,利用任何空闲周期来清除后台债务。使用来自VDI和web服务应用程序的跟踪,我们展示了我们的技术如何优于静态策略,该策略对延迟后台债务设置固定限制,并将SLO违规从54.6%(使用固定后台债务水印时)减少到只有6.2%,当我们的智能后台调度程序动态调整时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Smart Background Scheduler for Storage Systems
In today's enterprise storage systems, supported data services such as snapshot delete or drive rebuild can result in tremendous performance overhead if executed inline along with heavy foreground IO, often leading to missing Service Level Objectives (SLOs). Typical storage system applications such as Virtual Desktop Infrastructure (VDI) or web services follow a repetitive high/low workload pattern that can be learned and forecasted. We propose a priority-based background scheduler that learns this pattern and allows storage systems to maintain peak performance and meet service level objectives (SLOs) while supporting a number of data services. When foreground IO demand intensifies, system resources are dedicated to service foreground IO requests and any background processing that can be deferred are recorded to be processed in future idle cycles as long as our forecaster predicts that the storage pool has remaining capacity. The smart background scheduler adopts a resource partitioning model that allows both foreground and background IO to execute together as long as foreground IOs are not impacted, harnessing any free cycles to clear background debt. Using traces from VDI and web services applications, we show how our technique can out-perform a static policy that sets fixed limits on the deferred background debt and reduces SLO violations from 54.6% (when using a fixed background debt watermark), to only 6.2 % when dynamically adjusted by our smart background scheduler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信