Nanfang Yang, B. Nahid-Mobarakeh, A. Corne, Jean-Philippe Martin
{"title":"基于多矢量的绕线转子同步电机直流预测控制","authors":"Nanfang Yang, B. Nahid-Mobarakeh, A. Corne, Jean-Philippe Martin","doi":"10.1109/IAS.2016.7731881","DOIUrl":null,"url":null,"abstract":"The predictive direct current control (PDCC) select one of the available voltage vector which minimizes the current error. The limited choice makes the maximum current error is pretty large and thus considerable current ripples. In this paper, the voltage error of one-vector-based PDCC, two-voltage-based PDCC are analyzed. A multiple-vector-based PDCC is proposed, which uses the combination of two nearest voltage vectors and one zero voltage vector. The voltage vectors are similar as that of SVPWM, but the principle is different. It can further reduce the current error and thus current ripples. Besides, it has the flexibility to adjust the order of the voltage vectors to obtained lower average switching frequency compared to SVPWM.","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiple-vector-based predictive direct current control for a wound rotor synchronous machine drive\",\"authors\":\"Nanfang Yang, B. Nahid-Mobarakeh, A. Corne, Jean-Philippe Martin\",\"doi\":\"10.1109/IAS.2016.7731881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The predictive direct current control (PDCC) select one of the available voltage vector which minimizes the current error. The limited choice makes the maximum current error is pretty large and thus considerable current ripples. In this paper, the voltage error of one-vector-based PDCC, two-voltage-based PDCC are analyzed. A multiple-vector-based PDCC is proposed, which uses the combination of two nearest voltage vectors and one zero voltage vector. The voltage vectors are similar as that of SVPWM, but the principle is different. It can further reduce the current error and thus current ripples. Besides, it has the flexibility to adjust the order of the voltage vectors to obtained lower average switching frequency compared to SVPWM.\",\"PeriodicalId\":306377,\"journal\":{\"name\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2016.7731881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple-vector-based predictive direct current control for a wound rotor synchronous machine drive
The predictive direct current control (PDCC) select one of the available voltage vector which minimizes the current error. The limited choice makes the maximum current error is pretty large and thus considerable current ripples. In this paper, the voltage error of one-vector-based PDCC, two-voltage-based PDCC are analyzed. A multiple-vector-based PDCC is proposed, which uses the combination of two nearest voltage vectors and one zero voltage vector. The voltage vectors are similar as that of SVPWM, but the principle is different. It can further reduce the current error and thus current ripples. Besides, it has the flexibility to adjust the order of the voltage vectors to obtained lower average switching frequency compared to SVPWM.