V. A. Bohatyrenko, D. Kamenskyh, V. Yevdokymenko, O. Andreieva, M. O. Olyanovska
{"title":"复合膨润土-铁磁粉的胶体化学合成","authors":"V. A. Bohatyrenko, D. Kamenskyh, V. Yevdokymenko, O. Andreieva, M. O. Olyanovska","doi":"10.15407/hftp14.01.053","DOIUrl":null,"url":null,"abstract":"In this paper it is discussed the colloidal-chemical method of synthesis of dispersed composite bentonite-ferromagnetic powders that are stable to oxidation. It is shown that for this purpose it is advisable to use acid-activated bentonite clay with a high content of clay mineral - montmorillonite. Modified bentonite is a slightly amorphized silica product that serves as a porous matrix for crystallization of goethite α-FeOOH. The formation of goethite occurs at the centers of crystallization - particles of ferrihydrite stabilized by activated bentonite (Fh) during precipitation with an ammonia solution from a ferrum(ІІІ) hydroxide FeO(OH)×nH2O colloidal solution. In the resulting composite, goethite particles are cemented in the aluminosilicate framework of activated dispersed clay as a result of the interpenetration of the structures of the double layered hydroxide and activated bentonite. Further recrystallization of goethite with the formation of mainly magnetite and possibly maghemite in the structure of activated bentonite is provided by thermal firing of composite goethite powder with the addition of metallic iron powder. The methods of IR spectroscopy, X-ray structural analysis, electron microscopy and the study of magnetic properties showed that the obtained composite powder is environmentally friendly and exhibits the properties of a soft magnetic material. Such powders are promising for use as sorbents for environmental cleaning, as well as for biomedical purposes due to their low toxicity and high value of saturation magnetization.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal-chemical synthesis of composite bentonite - ferromagnetic powder\",\"authors\":\"V. A. Bohatyrenko, D. Kamenskyh, V. Yevdokymenko, O. Andreieva, M. O. Olyanovska\",\"doi\":\"10.15407/hftp14.01.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper it is discussed the colloidal-chemical method of synthesis of dispersed composite bentonite-ferromagnetic powders that are stable to oxidation. It is shown that for this purpose it is advisable to use acid-activated bentonite clay with a high content of clay mineral - montmorillonite. Modified bentonite is a slightly amorphized silica product that serves as a porous matrix for crystallization of goethite α-FeOOH. The formation of goethite occurs at the centers of crystallization - particles of ferrihydrite stabilized by activated bentonite (Fh) during precipitation with an ammonia solution from a ferrum(ІІІ) hydroxide FeO(OH)×nH2O colloidal solution. In the resulting composite, goethite particles are cemented in the aluminosilicate framework of activated dispersed clay as a result of the interpenetration of the structures of the double layered hydroxide and activated bentonite. Further recrystallization of goethite with the formation of mainly magnetite and possibly maghemite in the structure of activated bentonite is provided by thermal firing of composite goethite powder with the addition of metallic iron powder. The methods of IR spectroscopy, X-ray structural analysis, electron microscopy and the study of magnetic properties showed that the obtained composite powder is environmentally friendly and exhibits the properties of a soft magnetic material. Such powders are promising for use as sorbents for environmental cleaning, as well as for biomedical purposes due to their low toxicity and high value of saturation magnetization.\",\"PeriodicalId\":296392,\"journal\":{\"name\":\"Himia, Fizika ta Tehnologia Poverhni\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Himia, Fizika ta Tehnologia Poverhni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/hftp14.01.053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp14.01.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Colloidal-chemical synthesis of composite bentonite - ferromagnetic powder
In this paper it is discussed the colloidal-chemical method of synthesis of dispersed composite bentonite-ferromagnetic powders that are stable to oxidation. It is shown that for this purpose it is advisable to use acid-activated bentonite clay with a high content of clay mineral - montmorillonite. Modified bentonite is a slightly amorphized silica product that serves as a porous matrix for crystallization of goethite α-FeOOH. The formation of goethite occurs at the centers of crystallization - particles of ferrihydrite stabilized by activated bentonite (Fh) during precipitation with an ammonia solution from a ferrum(ІІІ) hydroxide FeO(OH)×nH2O colloidal solution. In the resulting composite, goethite particles are cemented in the aluminosilicate framework of activated dispersed clay as a result of the interpenetration of the structures of the double layered hydroxide and activated bentonite. Further recrystallization of goethite with the formation of mainly magnetite and possibly maghemite in the structure of activated bentonite is provided by thermal firing of composite goethite powder with the addition of metallic iron powder. The methods of IR spectroscopy, X-ray structural analysis, electron microscopy and the study of magnetic properties showed that the obtained composite powder is environmentally friendly and exhibits the properties of a soft magnetic material. Such powders are promising for use as sorbents for environmental cleaning, as well as for biomedical purposes due to their low toxicity and high value of saturation magnetization.