多用户肌电接口的自适应卷积神经网络框架

Keun-Tae Kim, Ki-Hee Park, Seong-Whan Lee
{"title":"多用户肌电接口的自适应卷积神经网络框架","authors":"Keun-Tae Kim, Ki-Hee Park, Seong-Whan Lee","doi":"10.1109/ACPR.2017.52","DOIUrl":null,"url":null,"abstract":"Recently, the electromyogram (EMG)-based userinterfaces have developed for control of wearable rehabilitation robots such as arm prosthetics. In these interfaces, decoding of the user's movement intention is significant for controlling the robots properly. However, the high inter-user variations in EMG signals have disturbed to a stable decoding performance with multi-user. In this context, we developed an user-independent decoding method using the convolutional neural networks (CNN) for multi-user myoelectric interfaces. Specifically, we devise an user-adaptive framework based on the CNN for decoding of movement intentions using raw EMG signals. The Ninapro database was used to our experiments, and the experimental results show that our methods successfully decoded hand movement intentions. The effectiveness of the proposed method was also confirmed by experiment to decode movement intentions with across different subjects.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive Convolutional Neural Network Framework for Multi-user Myoelectric Interfaces\",\"authors\":\"Keun-Tae Kim, Ki-Hee Park, Seong-Whan Lee\",\"doi\":\"10.1109/ACPR.2017.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the electromyogram (EMG)-based userinterfaces have developed for control of wearable rehabilitation robots such as arm prosthetics. In these interfaces, decoding of the user's movement intention is significant for controlling the robots properly. However, the high inter-user variations in EMG signals have disturbed to a stable decoding performance with multi-user. In this context, we developed an user-independent decoding method using the convolutional neural networks (CNN) for multi-user myoelectric interfaces. Specifically, we devise an user-adaptive framework based on the CNN for decoding of movement intentions using raw EMG signals. The Ninapro database was used to our experiments, and the experimental results show that our methods successfully decoded hand movement intentions. The effectiveness of the proposed method was also confirmed by experiment to decode movement intentions with across different subjects.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,基于肌电图(electromyogram, EMG)的用户界面已被开发用于可穿戴式康复机器人(如手臂假肢)的控制。在这些界面中,解码用户的运动意图对于机器人的正确控制具有重要意义。然而,肌电信号的高用户间差异影响了多用户解码的稳定性能。在此背景下,我们开发了一种使用卷积神经网络(CNN)的用户独立解码方法,用于多用户肌电接口。具体来说,我们设计了一个基于CNN的用户自适应框架,用于使用原始肌电信号解码运动意图。使用Ninapro数据库进行实验,实验结果表明,我们的方法成功地解码了手部运动意图。通过实验验证了该方法对不同被试的动作意图进行解码的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Convolutional Neural Network Framework for Multi-user Myoelectric Interfaces
Recently, the electromyogram (EMG)-based userinterfaces have developed for control of wearable rehabilitation robots such as arm prosthetics. In these interfaces, decoding of the user's movement intention is significant for controlling the robots properly. However, the high inter-user variations in EMG signals have disturbed to a stable decoding performance with multi-user. In this context, we developed an user-independent decoding method using the convolutional neural networks (CNN) for multi-user myoelectric interfaces. Specifically, we devise an user-adaptive framework based on the CNN for decoding of movement intentions using raw EMG signals. The Ninapro database was used to our experiments, and the experimental results show that our methods successfully decoded hand movement intentions. The effectiveness of the proposed method was also confirmed by experiment to decode movement intentions with across different subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信