基于k均值和三元特征向量的文本数据流聚类方法

M. PhridviRaj, C. V. Rao
{"title":"基于k均值和三元特征向量的文本数据流聚类方法","authors":"M. PhridviRaj, C. V. Rao","doi":"10.1145/2832987.2833081","DOIUrl":null,"url":null,"abstract":"Clustering text data streams is an unsupervised learning process which requires handling data streams. In the current work, we find the pair wise distance between customer transactions using the transaction similarity measure and obtain corresponding pair wise distance matrix. This pair wise distance matrix is then used to cluster the data streams such as customer transactions which are generated continuously in super markets and stored in to the database. For clustering, customer transactions, we use the k-means clustering algorithm. The input to k-means algorithm is the distance matrix in contrast to conventional approach which does not use the distance matrix. Finally, we define the proposed distance measure and validate it using the case study. We compare the results obtained using this approach with the one obtained using conventional k-means.","PeriodicalId":416001,"journal":{"name":"Proceedings of the The International Conference on Engineering & MIS 2015","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Approach for Clustering Text Data Streams Using K-means and Ternary Feature Vector Based Similarity Measure\",\"authors\":\"M. PhridviRaj, C. V. Rao\",\"doi\":\"10.1145/2832987.2833081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering text data streams is an unsupervised learning process which requires handling data streams. In the current work, we find the pair wise distance between customer transactions using the transaction similarity measure and obtain corresponding pair wise distance matrix. This pair wise distance matrix is then used to cluster the data streams such as customer transactions which are generated continuously in super markets and stored in to the database. For clustering, customer transactions, we use the k-means clustering algorithm. The input to k-means algorithm is the distance matrix in contrast to conventional approach which does not use the distance matrix. Finally, we define the proposed distance measure and validate it using the case study. We compare the results obtained using this approach with the one obtained using conventional k-means.\",\"PeriodicalId\":416001,\"journal\":{\"name\":\"Proceedings of the The International Conference on Engineering & MIS 2015\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the The International Conference on Engineering & MIS 2015\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2832987.2833081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The International Conference on Engineering & MIS 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832987.2833081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

聚类文本数据流是一种需要处理数据流的无监督学习过程。在目前的工作中,我们使用交易相似度度量来找到客户交易之间的对距离,并得到相应的对距离矩阵。然后使用这种对距离矩阵对数据流进行聚类,例如在超市中连续生成并存储在数据库中的客户交易。对于聚类,客户交易,我们使用k-means聚类算法。与不使用距离矩阵的传统方法相比,k-means算法的输入是距离矩阵。最后,我们定义了所提出的距离度量,并通过案例研究对其进行了验证。我们将使用这种方法获得的结果与使用传统k-means获得的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach for Clustering Text Data Streams Using K-means and Ternary Feature Vector Based Similarity Measure
Clustering text data streams is an unsupervised learning process which requires handling data streams. In the current work, we find the pair wise distance between customer transactions using the transaction similarity measure and obtain corresponding pair wise distance matrix. This pair wise distance matrix is then used to cluster the data streams such as customer transactions which are generated continuously in super markets and stored in to the database. For clustering, customer transactions, we use the k-means clustering algorithm. The input to k-means algorithm is the distance matrix in contrast to conventional approach which does not use the distance matrix. Finally, we define the proposed distance measure and validate it using the case study. We compare the results obtained using this approach with the one obtained using conventional k-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信