Diego Perez Liebana, Philipp Rohlfshagen, S. Lucas
{"title":"蒙特卡洛树搜索:长期与短期规划","authors":"Diego Perez Liebana, Philipp Rohlfshagen, S. Lucas","doi":"10.1109/CIG.2012.6374159","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of Monte Carlo Tree Search (MCTS) on the Physical Travelling Salesman Problem (PTSP), a real-time game where the player navigates a ship across a map full of obstacles in order to visit a series of waypoints as quickly as possible. In particular, we assess the algorithm's ability to plan ahead and subsequently solve the two major constituents of the PTSP: the order of waypoints (long-term planning) and driving the ship (short-term planning). We show that MCTS can provide better results when these problems are treated separately: the optimal order of cities is found using Branch & Bound and the ship is navigated to collect the waypoints using MCTS. We also demonstrate that the physics of the PTSP game impose a challenge regarding the optimal order of cities and propose a solution that obtains better results than following the TSP route of minimum Euclidean distance.","PeriodicalId":288052,"journal":{"name":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Monte Carlo Tree Search: Long-term versus short-term planning\",\"authors\":\"Diego Perez Liebana, Philipp Rohlfshagen, S. Lucas\",\"doi\":\"10.1109/CIG.2012.6374159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the use of Monte Carlo Tree Search (MCTS) on the Physical Travelling Salesman Problem (PTSP), a real-time game where the player navigates a ship across a map full of obstacles in order to visit a series of waypoints as quickly as possible. In particular, we assess the algorithm's ability to plan ahead and subsequently solve the two major constituents of the PTSP: the order of waypoints (long-term planning) and driving the ship (short-term planning). We show that MCTS can provide better results when these problems are treated separately: the optimal order of cities is found using Branch & Bound and the ship is navigated to collect the waypoints using MCTS. We also demonstrate that the physics of the PTSP game impose a challenge regarding the optimal order of cities and propose a solution that obtains better results than following the TSP route of minimum Euclidean distance.\",\"PeriodicalId\":288052,\"journal\":{\"name\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2012.6374159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2012.6374159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monte Carlo Tree Search: Long-term versus short-term planning
In this paper we investigate the use of Monte Carlo Tree Search (MCTS) on the Physical Travelling Salesman Problem (PTSP), a real-time game where the player navigates a ship across a map full of obstacles in order to visit a series of waypoints as quickly as possible. In particular, we assess the algorithm's ability to plan ahead and subsequently solve the two major constituents of the PTSP: the order of waypoints (long-term planning) and driving the ship (short-term planning). We show that MCTS can provide better results when these problems are treated separately: the optimal order of cities is found using Branch & Bound and the ship is navigated to collect the waypoints using MCTS. We also demonstrate that the physics of the PTSP game impose a challenge regarding the optimal order of cities and propose a solution that obtains better results than following the TSP route of minimum Euclidean distance.