一种表征大功率led热阻的方法

J. Ellis, Gethn Pickard
{"title":"一种表征大功率led热阻的方法","authors":"J. Ellis, Gethn Pickard","doi":"10.1109/SEMI-THERM.2017.7896943","DOIUrl":null,"url":null,"abstract":"A method for determining the thermal resistance of high power LEDs is described. Unlike more complicated systems, this method simply uses a fast pulse to determine the junction temperature under actual operating currents, combined with a conventional thermocouple to measure the mounting face temperature. The literature can be somewhat confusing in describing the thermal resistance of an LED. Often an “apparent” thermal resistance is determined from the input power alone, ignoring the optical power output. This can provide a correct junction temperature as a guideline under a given condition. However, the real thermal resistance, which may be about twice as high as the apparent thermal resistance, is of little use unless the exact output power of the LED is known, so that the real heat dissipated can be determined. This is dependent on the operating current, temperature, and where the LED is on its longevity curve, and can also be affected by the light fitting as well. Therefore, it is necessary to model these LED effects which correctly describes the light output under real conditions.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method of characterising the thermal resistance of high power LEDs\",\"authors\":\"J. Ellis, Gethn Pickard\",\"doi\":\"10.1109/SEMI-THERM.2017.7896943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for determining the thermal resistance of high power LEDs is described. Unlike more complicated systems, this method simply uses a fast pulse to determine the junction temperature under actual operating currents, combined with a conventional thermocouple to measure the mounting face temperature. The literature can be somewhat confusing in describing the thermal resistance of an LED. Often an “apparent” thermal resistance is determined from the input power alone, ignoring the optical power output. This can provide a correct junction temperature as a guideline under a given condition. However, the real thermal resistance, which may be about twice as high as the apparent thermal resistance, is of little use unless the exact output power of the LED is known, so that the real heat dissipated can be determined. This is dependent on the operating current, temperature, and where the LED is on its longevity curve, and can also be affected by the light fitting as well. Therefore, it is necessary to model these LED effects which correctly describes the light output under real conditions.\",\"PeriodicalId\":442782,\"journal\":{\"name\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEMI-THERM.2017.7896943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种测定大功率led热阻的方法。与更复杂的系统不同,该方法仅使用快速脉冲来确定实际工作电流下的结温,并结合传统热电偶来测量安装面温度。在描述LED的热阻时,文献可能有些混乱。通常,“表观”热阻仅由输入功率确定,忽略光功率输出。这可以在给定条件下提供正确的结温作为指导。然而,实际的热阻,可能是视热阻的两倍左右,除非知道LED的确切输出功率,从而可以确定实际的散热,否则几乎没有用处。这取决于工作电流,温度,以及LED在其寿命曲线上的位置,也可能受到灯光安装的影响。因此,有必要对这些LED效应进行建模,以正确描述实际条件下的光输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of characterising the thermal resistance of high power LEDs
A method for determining the thermal resistance of high power LEDs is described. Unlike more complicated systems, this method simply uses a fast pulse to determine the junction temperature under actual operating currents, combined with a conventional thermocouple to measure the mounting face temperature. The literature can be somewhat confusing in describing the thermal resistance of an LED. Often an “apparent” thermal resistance is determined from the input power alone, ignoring the optical power output. This can provide a correct junction temperature as a guideline under a given condition. However, the real thermal resistance, which may be about twice as high as the apparent thermal resistance, is of little use unless the exact output power of the LED is known, so that the real heat dissipated can be determined. This is dependent on the operating current, temperature, and where the LED is on its longevity curve, and can also be affected by the light fitting as well. Therefore, it is necessary to model these LED effects which correctly describes the light output under real conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信