多目标优化解的选择:决策与鲁棒性

A. Gaspar-Cunha, J. Ferreira, J. Covas, Gustavo Recio
{"title":"多目标优化解的选择:决策与鲁棒性","authors":"A. Gaspar-Cunha, J. Ferreira, J. Covas, Gustavo Recio","doi":"10.1109/MCDM.2014.7007183","DOIUrl":null,"url":null,"abstract":"A multidisciplinary design an optimization framework based on the use of multi-objective evolutionary algorithms, together with decision making and robustness strategies, was used to optimize the polymer extrusion process. This methodology was applied with the aim to select the best solutions from the Pareto set in a multi-objective environment. The application to a complex polymer extrusion case study demonstrated the validity and usefulness of the approach.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Selection of solutions in multi-objective optimization: Decision making and robustness\",\"authors\":\"A. Gaspar-Cunha, J. Ferreira, J. Covas, Gustavo Recio\",\"doi\":\"10.1109/MCDM.2014.7007183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multidisciplinary design an optimization framework based on the use of multi-objective evolutionary algorithms, together with decision making and robustness strategies, was used to optimize the polymer extrusion process. This methodology was applied with the aim to select the best solutions from the Pareto set in a multi-objective environment. The application to a complex polymer extrusion case study demonstrated the validity and usefulness of the approach.\",\"PeriodicalId\":335170,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2014.7007183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用基于多目标进化算法的多学科设计优化框架,结合决策和鲁棒性策略对聚合物挤出工艺进行优化。该方法的目的是在多目标环境中从Pareto集合中选择最优解。应用于一个复杂聚合物挤压案例研究表明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection of solutions in multi-objective optimization: Decision making and robustness
A multidisciplinary design an optimization framework based on the use of multi-objective evolutionary algorithms, together with decision making and robustness strategies, was used to optimize the polymer extrusion process. This methodology was applied with the aim to select the best solutions from the Pareto set in a multi-objective environment. The application to a complex polymer extrusion case study demonstrated the validity and usefulness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信