{"title":"曲线的连接残数与Chevalley-Weil公式","authors":"D. Arapura","doi":"10.4171/lem/1030","DOIUrl":null,"url":null,"abstract":". Given a finite group of automorphisms of a compact Riemann sur- face, the Chevalley-Weil formula computes the character valued Euler characteristic of an equivariant line bundle. The goal of this article is to give a proof by computing using residues of a Gauss-Manin connection.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Residues of connections and the Chevalley–Weil formula for curves\",\"authors\":\"D. Arapura\",\"doi\":\"10.4171/lem/1030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Given a finite group of automorphisms of a compact Riemann sur- face, the Chevalley-Weil formula computes the character valued Euler characteristic of an equivariant line bundle. The goal of this article is to give a proof by computing using residues of a Gauss-Manin connection.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residues of connections and the Chevalley–Weil formula for curves
. Given a finite group of automorphisms of a compact Riemann sur- face, the Chevalley-Weil formula computes the character valued Euler characteristic of an equivariant line bundle. The goal of this article is to give a proof by computing using residues of a Gauss-Manin connection.