利用自举表模式PET研究信道化Hotelling观测器的性能评价

C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick
{"title":"利用自举表模式PET研究信道化Hotelling观测器的性能评价","authors":"C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick","doi":"10.1109/NSSMIC.2003.1352402","DOIUrl":null,"url":null,"abstract":"This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies\",\"authors\":\"C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick\",\"doi\":\"10.1109/NSSMIC.2003.1352402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.\",\"PeriodicalId\":186175,\"journal\":{\"name\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2003.1352402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2003.1352402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究探讨了使用自举法生成的列表模式PET数据是否可以用于预测由通道化Hotelling观测器(CHO)评估的病变可检测性。利用蒙特卡罗模拟机生成磁盘对象的二维PET表模数据集采集。然后使用其中一个列表模式集来创建一个引导列表模式集的集合。将随机定位的信号(病变)引入到一半的列表模式集合中,以创建信号存在和信号不存在的列表模式集合。然后使用OSEM列表模式算法重建这些集合。CHO是根据自举数据集和独立噪声数据集生成的重建图像的集合计算的。f检验和学生t检验发现,使用独立噪声列表模式集和自举列表模式集生成的LROC曲线下的区域没有显著差异(置信水平为5%)。还展示了如何使用引导图像来实现有序子集期望最大化(OSEM)列表模式迭代重建的特定于患者的、基于cho的停止规则标准。将基于cho的停止规则准则应用于MCAT幻影的列表模式重建的实例表明,在迭代7时分别使用2个子集获得了最优的可检测性指标。本研究的结果表明,自举方法可以通过从患者研究(引入模拟病变)中生成具有更真实背景的数值观察者研究,并允许应用针对患者的、基于cho的停止规则准则进行列表模式迭代重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies
This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信