{"title":"利用自举表模式PET研究信道化Hotelling观测器的性能评价","authors":"C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick","doi":"10.1109/NSSMIC.2003.1352402","DOIUrl":null,"url":null,"abstract":"This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies\",\"authors\":\"C. Groiselle, Y. D’Asseler, H. Gifford, S. Glick\",\"doi\":\"10.1109/NSSMIC.2003.1352402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.\",\"PeriodicalId\":186175,\"journal\":{\"name\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2003.1352402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2003.1352402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of the channelized Hotelling observer using bootstrap list-mode PET studies
This study investigated whether list-mode PET data generated using the bootstrap method can be used to predict lesion detectability as assessed by the channelized Hotelling observer (CHO). A Monte-Carlo simulator was used to generate 2D PET list-mode data set acquisitions of a disk object. One of these list-mode sets was then used to create an ensemble of bootstrap list-mode sets. A randomly positioned signal (lesion) was introduced into half of the list-mode sets to create an ensemble of signal-present and signal-absent list-mode sets. These sets were then reconstructed using the OSEM list-mode algorithm. The CHO was computed from the ensemble of reconstructed images generated from the bootstrap data sets as well as from independent noisy data sets. The F-test and the student t-test found no significant difference (confidence level 5%) in the areas under the LROC curve generated using the independent noisy list-mode sets and the bootstrap list-mode sets for clinical count levels. It is also shown how bootstrap images can be used to implement a patient-specific, CHO-based stopping-rule criterion for ordered-subset expectation-maximization (OSEM) list-mode iterative reconstruction. An example of applying the CHO-based stopping-rule criterion for list-mode reconstruction of the MCAT phantom showed an optimal detectability index at iterations 7 using 2 subsets respectively. Results from this study suggest that the bootstrap approach can be used to conduct numerical observer studies with more realistic backgrounds by generating them from a patient study (with the introduction of simulated lesions), and allows the possibility of applying a patient-specific, CHO-based stopping-rule criterion for list-mode iterative reconstruction.