基于自适应模型和语义滤波的街道图像目标识别

Ge Qin, B. Vrusias
{"title":"基于自适应模型和语义滤波的街道图像目标识别","authors":"Ge Qin, B. Vrusias","doi":"10.1109/ICSIPA.2009.5478683","DOIUrl":null,"url":null,"abstract":"The need for a generic and adaptable object detection and recognition method in images, is becoming a necessity today, given the rapid development of the internet and multimedia databases in general. This paper compares the state-of-the-art in object recognition and proposes a method based on adaptable models for detecting thematic categories of objects. Furthermore, automatically constructed semantics are used for filtering false positive objects. The classification of objects into categories is performed by the popular Adaboost. The method has been used for identifying car objects and so far has indicated not only accurate recognition performance, but also good adaptability to new objects types.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptable models and semantic filtering for object recognition in street images\",\"authors\":\"Ge Qin, B. Vrusias\",\"doi\":\"10.1109/ICSIPA.2009.5478683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for a generic and adaptable object detection and recognition method in images, is becoming a necessity today, given the rapid development of the internet and multimedia databases in general. This paper compares the state-of-the-art in object recognition and proposes a method based on adaptable models for detecting thematic categories of objects. Furthermore, automatically constructed semantics are used for filtering false positive objects. The classification of objects into categories is performed by the popular Adaboost. The method has been used for identifying car objects and so far has indicated not only accurate recognition performance, but also good adaptability to new objects types.\",\"PeriodicalId\":400165,\"journal\":{\"name\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2009.5478683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着互联网和多媒体数据库的快速发展,对一种通用的、适应性强的图像目标检测和识别方法的需求日益迫切。本文比较了目标识别的研究现状,提出了一种基于自适应模型的目标主题分类检测方法。此外,使用自动构造的语义来过滤假阳性对象。对象分类是由流行的Adaboost执行的。将该方法应用于汽车物体的识别,结果表明,该方法不仅具有准确的识别性能,而且对新的物体类型具有良好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptable models and semantic filtering for object recognition in street images
The need for a generic and adaptable object detection and recognition method in images, is becoming a necessity today, given the rapid development of the internet and multimedia databases in general. This paper compares the state-of-the-art in object recognition and proposes a method based on adaptable models for detecting thematic categories of objects. Furthermore, automatically constructed semantics are used for filtering false positive objects. The classification of objects into categories is performed by the popular Adaboost. The method has been used for identifying car objects and so far has indicated not only accurate recognition performance, but also good adaptability to new objects types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信