{"title":"认知无线电网络中基于最大特征值逼近的频谱感知","authors":"Adeel Ahmed, Yim-Fun Hu, J. Noras, P. Pillai","doi":"10.1109/WoWMoM.2015.7158199","DOIUrl":null,"url":null,"abstract":"Eigenvalue based spectrum sensing schemes such as Maximum Minimum Eigenvalue (MME), Maximum Energy Detection (MED) and Energy with Minimum Eigenvalue (EME) have higher spectrum sensing performance without requiring any prior knowledge of Primary User (PU) signal but the decision hypothesis used in these eigenvalue based sensing schemes depends on the calculation of maximum eigenvalue from covariance matrix of measured signal. Calculation of the covariance matrix followed by eigenspace analysis of the covariance matrix is a resource intensive operation and takes overhead time during critical process of spectrum sensing. In this paper we propose a new blind spectrum sensing scheme based on the approximation of the maximum eigenvalue using state of the art results from Random Matrix Theory (RMT). The proposed sensing scheme has been evaluated through extensive simulations on wireless microphone signals and the proposed scheme shows higher probability of detection (Pd) performance. The proposed spectrum sensing also shows higher detection performance as compared to energy detection scheme and RMT based sensing schemes such as MME and EME.","PeriodicalId":221796,"journal":{"name":"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spectrum sensing based on Maximum Eigenvalue approximation in cognitive radio networks\",\"authors\":\"Adeel Ahmed, Yim-Fun Hu, J. Noras, P. Pillai\",\"doi\":\"10.1109/WoWMoM.2015.7158199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eigenvalue based spectrum sensing schemes such as Maximum Minimum Eigenvalue (MME), Maximum Energy Detection (MED) and Energy with Minimum Eigenvalue (EME) have higher spectrum sensing performance without requiring any prior knowledge of Primary User (PU) signal but the decision hypothesis used in these eigenvalue based sensing schemes depends on the calculation of maximum eigenvalue from covariance matrix of measured signal. Calculation of the covariance matrix followed by eigenspace analysis of the covariance matrix is a resource intensive operation and takes overhead time during critical process of spectrum sensing. In this paper we propose a new blind spectrum sensing scheme based on the approximation of the maximum eigenvalue using state of the art results from Random Matrix Theory (RMT). The proposed sensing scheme has been evaluated through extensive simulations on wireless microphone signals and the proposed scheme shows higher probability of detection (Pd) performance. The proposed spectrum sensing also shows higher detection performance as compared to energy detection scheme and RMT based sensing schemes such as MME and EME.\",\"PeriodicalId\":221796,\"journal\":{\"name\":\"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2015.7158199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2015.7158199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectrum sensing based on Maximum Eigenvalue approximation in cognitive radio networks
Eigenvalue based spectrum sensing schemes such as Maximum Minimum Eigenvalue (MME), Maximum Energy Detection (MED) and Energy with Minimum Eigenvalue (EME) have higher spectrum sensing performance without requiring any prior knowledge of Primary User (PU) signal but the decision hypothesis used in these eigenvalue based sensing schemes depends on the calculation of maximum eigenvalue from covariance matrix of measured signal. Calculation of the covariance matrix followed by eigenspace analysis of the covariance matrix is a resource intensive operation and takes overhead time during critical process of spectrum sensing. In this paper we propose a new blind spectrum sensing scheme based on the approximation of the maximum eigenvalue using state of the art results from Random Matrix Theory (RMT). The proposed sensing scheme has been evaluated through extensive simulations on wireless microphone signals and the proposed scheme shows higher probability of detection (Pd) performance. The proposed spectrum sensing also shows higher detection performance as compared to energy detection scheme and RMT based sensing schemes such as MME and EME.