用格基约简法对RSA大解密指数的一个特例进行密码分析

Majid Mumtaz, Ping Luo
{"title":"用格基约简法对RSA大解密指数的一个特例进行密码分析","authors":"Majid Mumtaz, Ping Luo","doi":"10.1109/ICCCS52626.2021.9449268","DOIUrl":null,"url":null,"abstract":"RSA public key cryptosystem is the “de-facto” standard, provides confidentiality and privacy security services over the internet. At Eurocrypt 1999, Boneh and Durfee proposed a polynomial time attacks on RSA small decryption key exponent. Their attacks worked by exploiting the lattice and sub lattice structure using lattice based Coppersmith's method to solve a modular polynomials, when $d < N^{0.284}$ and $d < N^{0.292}$ respectively. In this work, we propose a new attack on some special case of Boneh and Durfee's attack method with respect to large decryption exponent (i.e. $d=N^{\\epsilon} > e=N^{\\alpha}$, where $\\alpha$ and $\\epsilon$ are the encryption and decryption exponents respectively) for some $\\alpha\\leq\\epsilon$. The condition $d > \\phi(N)-N^{\\epsilon}$ satisfies our devised attack and the experimental outcome certifies that an RSA cryptosystem with large decryption exponent successfully revealed the weak keys through lattice basis reduction method.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cryptanalysis of a Special Case of RSA Large Decryption Exponent Using Lattice Basis Reduction Method\",\"authors\":\"Majid Mumtaz, Ping Luo\",\"doi\":\"10.1109/ICCCS52626.2021.9449268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RSA public key cryptosystem is the “de-facto” standard, provides confidentiality and privacy security services over the internet. At Eurocrypt 1999, Boneh and Durfee proposed a polynomial time attacks on RSA small decryption key exponent. Their attacks worked by exploiting the lattice and sub lattice structure using lattice based Coppersmith's method to solve a modular polynomials, when $d < N^{0.284}$ and $d < N^{0.292}$ respectively. In this work, we propose a new attack on some special case of Boneh and Durfee's attack method with respect to large decryption exponent (i.e. $d=N^{\\\\epsilon} > e=N^{\\\\alpha}$, where $\\\\alpha$ and $\\\\epsilon$ are the encryption and decryption exponents respectively) for some $\\\\alpha\\\\leq\\\\epsilon$. The condition $d > \\\\phi(N)-N^{\\\\epsilon}$ satisfies our devised attack and the experimental outcome certifies that an RSA cryptosystem with large decryption exponent successfully revealed the weak keys through lattice basis reduction method.\",\"PeriodicalId\":376290,\"journal\":{\"name\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS52626.2021.9449268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

RSA公钥密码系统是“事实上的”标准,在互联网上提供机密性和隐私安全服务。在Eurocrypt 1999上,Boneh和Durfee提出了一种针对RSA小解密密钥指数的多项式时间攻击方法。他们的攻击是通过利用晶格和亚晶格结构,使用基于晶格的Coppersmith方法来解决模多项式,分别为$d < N^{0.284}$和$d < N^{0.292}$。在这项工作中,我们针对一些$\alpha\leq\epsilon$的大解密指数(即$d=N^{\epsilon} > e=N^{\alpha}$,其中$\alpha$和$\epsilon$分别是加密指数和解密指数)的Boneh和Durfee攻击方法的一些特殊情况提出了一种新的攻击方法。该条件$d > \phi(N)-N^{\epsilon}$满足我们设计的攻击,实验结果证明了一个大解密指数的RSA密码系统通过格基约简方法成功地揭示了弱密钥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptanalysis of a Special Case of RSA Large Decryption Exponent Using Lattice Basis Reduction Method
RSA public key cryptosystem is the “de-facto” standard, provides confidentiality and privacy security services over the internet. At Eurocrypt 1999, Boneh and Durfee proposed a polynomial time attacks on RSA small decryption key exponent. Their attacks worked by exploiting the lattice and sub lattice structure using lattice based Coppersmith's method to solve a modular polynomials, when $d < N^{0.284}$ and $d < N^{0.292}$ respectively. In this work, we propose a new attack on some special case of Boneh and Durfee's attack method with respect to large decryption exponent (i.e. $d=N^{\epsilon} > e=N^{\alpha}$, where $\alpha$ and $\epsilon$ are the encryption and decryption exponents respectively) for some $\alpha\leq\epsilon$. The condition $d > \phi(N)-N^{\epsilon}$ satisfies our devised attack and the experimental outcome certifies that an RSA cryptosystem with large decryption exponent successfully revealed the weak keys through lattice basis reduction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信