机器人场景感知的可重构硬件库

Yanqi Liu, A. Opipari, O. Jenkins, R. I. Bahar
{"title":"机器人场景感知的可重构硬件库","authors":"Yanqi Liu, A. Opipari, O. Jenkins, R. I. Bahar","doi":"10.1145/3508352.3561110","DOIUrl":null,"url":null,"abstract":"Perceiving the position and orientation of objects (i.e., pose estimation) is a crucial prerequisite for robots acting within their natural environment. We present a hardware acceleration approach to enable real-time and energy efficient articulated pose estimation for robots operating in unstructured environments. Our hardware accelerator implements Nonparametric Belief Propagation (NBP) to infer the belief distribution of articulated object poses. Our approach is on average, 26X more energy efficient than a high-end GPU and 11X faster than an embedded low-power GPU implementation. Moreover, we present a Monte-Carlo Perception Library generated from high-level synthesis to enable reconfigurable hardware designs on FPGA fabrics that are better tuned to user-specified scene, resource, and performance constraints.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Reconfigurable Hardware Library for Robot Scene Perception\",\"authors\":\"Yanqi Liu, A. Opipari, O. Jenkins, R. I. Bahar\",\"doi\":\"10.1145/3508352.3561110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perceiving the position and orientation of objects (i.e., pose estimation) is a crucial prerequisite for robots acting within their natural environment. We present a hardware acceleration approach to enable real-time and energy efficient articulated pose estimation for robots operating in unstructured environments. Our hardware accelerator implements Nonparametric Belief Propagation (NBP) to infer the belief distribution of articulated object poses. Our approach is on average, 26X more energy efficient than a high-end GPU and 11X faster than an embedded low-power GPU implementation. Moreover, we present a Monte-Carlo Perception Library generated from high-level synthesis to enable reconfigurable hardware designs on FPGA fabrics that are better tuned to user-specified scene, resource, and performance constraints.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

感知物体的位置和方向(即姿态估计)是机器人在自然环境中行动的关键先决条件。我们提出了一种硬件加速方法,以实现在非结构化环境中操作的机器人的实时和节能的关节姿态估计。我们的硬件加速器实现了非参数信念传播(NBP)来推断关节目标姿态的信念分布。我们的方法平均比高端GPU节能26倍,比嵌入式低功耗GPU实现快11倍。此外,我们提出了一个由高级合成生成的蒙特卡罗感知库,以实现FPGA结构上的可重构硬件设计,从而更好地适应用户指定的场景、资源和性能约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reconfigurable Hardware Library for Robot Scene Perception
Perceiving the position and orientation of objects (i.e., pose estimation) is a crucial prerequisite for robots acting within their natural environment. We present a hardware acceleration approach to enable real-time and energy efficient articulated pose estimation for robots operating in unstructured environments. Our hardware accelerator implements Nonparametric Belief Propagation (NBP) to infer the belief distribution of articulated object poses. Our approach is on average, 26X more energy efficient than a high-end GPU and 11X faster than an embedded low-power GPU implementation. Moreover, we present a Monte-Carlo Perception Library generated from high-level synthesis to enable reconfigurable hardware designs on FPGA fabrics that are better tuned to user-specified scene, resource, and performance constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信