无频率间隙的傅里叶稀疏插值

Xue Chen, D. Kane, Eric Price, Zhao Song
{"title":"无频率间隙的傅里叶稀疏插值","authors":"Xue Chen, D. Kane, Eric Price, Zhao Song","doi":"10.1109/FOCS.2016.84","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating a Fourier-sparse signal from noisy samples, where the sampling is done over some interval [0, T] and the frequencies can be \"off-grid\". Previous methods for this problem required the gap between frequencies to be above 1/T, the threshold required to robustly identify individual frequencies. We show the frequency gap is not necessary to estimate the signal as a whole: for arbitrary k-Fourier-sparse signals under l2 bounded noise, we show how to estimate the signal with a constant factor growth of the noise and sample complexity polynomial in k and logarithmic in the bandwidth and signal-to-noise ratio. As a special case, we get an algorithm to interpolate degree d polynomials from noisy measurements, using O(d) samples and increasing the noise by a constant factor in l2.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Fourier-Sparse Interpolation without a Frequency Gap\",\"authors\":\"Xue Chen, D. Kane, Eric Price, Zhao Song\",\"doi\":\"10.1109/FOCS.2016.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating a Fourier-sparse signal from noisy samples, where the sampling is done over some interval [0, T] and the frequencies can be \\\"off-grid\\\". Previous methods for this problem required the gap between frequencies to be above 1/T, the threshold required to robustly identify individual frequencies. We show the frequency gap is not necessary to estimate the signal as a whole: for arbitrary k-Fourier-sparse signals under l2 bounded noise, we show how to estimate the signal with a constant factor growth of the noise and sample complexity polynomial in k and logarithmic in the bandwidth and signal-to-noise ratio. As a special case, we get an algorithm to interpolate degree d polynomials from noisy measurements, using O(d) samples and increasing the noise by a constant factor in l2.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们考虑从噪声样本中估计傅里叶稀疏信号的问题,其中采样是在某个间隔[0,T]内完成的,频率可以是“离网”的。以前解决这个问题的方法要求频率之间的差距大于1/T,这是鲁棒识别单个频率所需的阈值。我们展示了频率间隙对于整个信号的估计是不必要的:对于l2有界噪声下的任意k-傅立叶稀疏信号,我们展示了如何用噪声的常数因子增长和k的样本复杂度多项式和带宽和信噪比的对数来估计信号。作为一种特殊情况,我们得到了一种从噪声测量中插值d阶多项式的算法,使用O(d)个样本并在l2中增加一个常数因子的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier-Sparse Interpolation without a Frequency Gap
We consider the problem of estimating a Fourier-sparse signal from noisy samples, where the sampling is done over some interval [0, T] and the frequencies can be "off-grid". Previous methods for this problem required the gap between frequencies to be above 1/T, the threshold required to robustly identify individual frequencies. We show the frequency gap is not necessary to estimate the signal as a whole: for arbitrary k-Fourier-sparse signals under l2 bounded noise, we show how to estimate the signal with a constant factor growth of the noise and sample complexity polynomial in k and logarithmic in the bandwidth and signal-to-noise ratio. As a special case, we get an algorithm to interpolate degree d polynomials from noisy measurements, using O(d) samples and increasing the noise by a constant factor in l2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信