通过深度学习设计的结构色彩

Lu Wang, Tao Wang
{"title":"通过深度学习设计的结构色彩","authors":"Lu Wang, Tao Wang","doi":"10.1117/12.2671706","DOIUrl":null,"url":null,"abstract":"Structural colors can be generated by metasurfaces with the capability of spectrum manipulation at subwavelength. In general, the optimization of specific color designs and iterative geometric parameters is computationally time-consuming, so obtaining thousands of different structural colors can be challenging. Deep learning methods offer a new approach to the efficient design of nanophotonic devices, as it revolutionizes the way nanophotonic devices are designed. Here, we trained a deep learning method, which can predict the colors by random geometries in the forward modeling process. The forward design model is good at processing data, which is an effective way to design nanophotonic devices.","PeriodicalId":422113,"journal":{"name":"Photonics and Optoelectronics Meetings","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural colors designed by deep learning\",\"authors\":\"Lu Wang, Tao Wang\",\"doi\":\"10.1117/12.2671706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural colors can be generated by metasurfaces with the capability of spectrum manipulation at subwavelength. In general, the optimization of specific color designs and iterative geometric parameters is computationally time-consuming, so obtaining thousands of different structural colors can be challenging. Deep learning methods offer a new approach to the efficient design of nanophotonic devices, as it revolutionizes the way nanophotonic devices are designed. Here, we trained a deep learning method, which can predict the colors by random geometries in the forward modeling process. The forward design model is good at processing data, which is an effective way to design nanophotonic devices.\",\"PeriodicalId\":422113,\"journal\":{\"name\":\"Photonics and Optoelectronics Meetings\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Optoelectronics Meetings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Optoelectronics Meetings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有亚波长光谱操纵能力的超表面可以产生结构色。一般来说,特定颜色设计和迭代几何参数的优化是计算耗时的,因此获得数千种不同的结构颜色是具有挑战性的。深度学习方法为纳米光子器件的高效设计提供了新的途径,因为它彻底改变了纳米光子器件的设计方式。在这里,我们训练了一种深度学习方法,该方法可以在正演建模过程中通过随机几何来预测颜色。正演设计模型具有良好的数据处理能力,是设计纳米光子器件的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural colors designed by deep learning
Structural colors can be generated by metasurfaces with the capability of spectrum manipulation at subwavelength. In general, the optimization of specific color designs and iterative geometric parameters is computationally time-consuming, so obtaining thousands of different structural colors can be challenging. Deep learning methods offer a new approach to the efficient design of nanophotonic devices, as it revolutionizes the way nanophotonic devices are designed. Here, we trained a deep learning method, which can predict the colors by random geometries in the forward modeling process. The forward design model is good at processing data, which is an effective way to design nanophotonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信