图Qn, k, m的独立数和支配数的注记

Jiafei Liu, Shuming Zhou, Zhendong Gu, Yihong Wang, Qianru Zhou
{"title":"图Qn, k, m的独立数和支配数的注记","authors":"Jiafei Liu, Shuming Zhou, Zhendong Gu, Yihong Wang, Qianru Zhou","doi":"10.1142/s0129626419500117","DOIUrl":null,"url":null,"abstract":"The independent number and domination number are two essential parameters to assess the resilience of the interconnection network of multiprocessor systems which is usually modeled by a graph. The independent number, denoted by [Formula: see text], of a graph [Formula: see text] is the maximum cardinality of any subset [Formula: see text] such that no two elements in [Formula: see text] are adjacent in [Formula: see text]. The domination number, denoted by [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of any subset [Formula: see text] such that every vertex in [Formula: see text] is either in [Formula: see text] or adjacent to an element of [Formula: see text]. But so far, determining the independent number and domination number of a graph is still an NPC problem. Therefore, it is of utmost importance to determine the number of independent and domination number of some special networks with potential applications in multiprocessor system. In this paper, we firstly resolve the exact values of independent number and upper and lower bound of domination number of the [Formula: see text]-graph, a common generalization of various popular interconnection networks. Besides, as by-products, we derive the independent number and domination number of [Formula: see text]-star graph [Formula: see text], [Formula: see text]-arrangement graph [Formula: see text], as well as three special graphs.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note of Independent Number and Domination Number of Qn, k, m-Graph\",\"authors\":\"Jiafei Liu, Shuming Zhou, Zhendong Gu, Yihong Wang, Qianru Zhou\",\"doi\":\"10.1142/s0129626419500117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The independent number and domination number are two essential parameters to assess the resilience of the interconnection network of multiprocessor systems which is usually modeled by a graph. The independent number, denoted by [Formula: see text], of a graph [Formula: see text] is the maximum cardinality of any subset [Formula: see text] such that no two elements in [Formula: see text] are adjacent in [Formula: see text]. The domination number, denoted by [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of any subset [Formula: see text] such that every vertex in [Formula: see text] is either in [Formula: see text] or adjacent to an element of [Formula: see text]. But so far, determining the independent number and domination number of a graph is still an NPC problem. Therefore, it is of utmost importance to determine the number of independent and domination number of some special networks with potential applications in multiprocessor system. In this paper, we firstly resolve the exact values of independent number and upper and lower bound of domination number of the [Formula: see text]-graph, a common generalization of various popular interconnection networks. Besides, as by-products, we derive the independent number and domination number of [Formula: see text]-star graph [Formula: see text], [Formula: see text]-arrangement graph [Formula: see text], as well as three special graphs.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626419500117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626419500117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

独立数和支配数是评价多处理机互连网络弹性的两个重要参数,多处理机互连网络弹性通常用图来建模。图[公式:见文]的独立数(用[公式:见文]表示)是任意子集[公式:见文]的最大基数,使得[公式:见文]中的两个元素在[公式:见文]中不相邻。图[公式:见文]的支配数,用[公式:见文]表示,是任意子集[公式:见文]的最小基数,使得[公式:见文]中的每个顶点要么在[公式:见文]中,要么毗邻[公式:见文]的一个元素。但到目前为止,确定图的独立数和支配数仍然是一个NPC问题。因此,确定在多处理机系统中具有潜在应用价值的特殊网络的独立网络数和控制网络数就显得尤为重要。本文首先求解了各种流行互联网络的共同概括——图的独立数和支配数的上下界的精确值。此外,作为副产物,我们导出了[公式:文]-星图[公式:文],[公式:文]-排列图[公式:文]的独立数和支配数,以及三个特殊图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note of Independent Number and Domination Number of Qn, k, m-Graph
The independent number and domination number are two essential parameters to assess the resilience of the interconnection network of multiprocessor systems which is usually modeled by a graph. The independent number, denoted by [Formula: see text], of a graph [Formula: see text] is the maximum cardinality of any subset [Formula: see text] such that no two elements in [Formula: see text] are adjacent in [Formula: see text]. The domination number, denoted by [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of any subset [Formula: see text] such that every vertex in [Formula: see text] is either in [Formula: see text] or adjacent to an element of [Formula: see text]. But so far, determining the independent number and domination number of a graph is still an NPC problem. Therefore, it is of utmost importance to determine the number of independent and domination number of some special networks with potential applications in multiprocessor system. In this paper, we firstly resolve the exact values of independent number and upper and lower bound of domination number of the [Formula: see text]-graph, a common generalization of various popular interconnection networks. Besides, as by-products, we derive the independent number and domination number of [Formula: see text]-star graph [Formula: see text], [Formula: see text]-arrangement graph [Formula: see text], as well as three special graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信