基于嵌套反向传播神经网络的完全未知混沌系统同步控制

Xiaolin Song, Zilin Gao, Xitao Zou, Liyuan Qi, Yuan Luo
{"title":"基于嵌套反向传播神经网络的完全未知混沌系统同步控制","authors":"Xiaolin Song, Zilin Gao, Xitao Zou, Liyuan Qi, Yuan Luo","doi":"10.1109/ICACI52617.2021.9435885","DOIUrl":null,"url":null,"abstract":"To solve the problem of existing chaotic systems with unknown nonlinearities, enormous parameters and external disturbances, in this paper, a synchronization controller with parameter adaptive laws is proposed based on nested back-propagation neural networks and the adaptive method, where the nested back-propagation neural networks are used to approximate the unknown nonlinearities based on same experiences and the unknown parameters are estimated by the adaptive method. Then the asymptotical synchronization of the drive-response chaotic systems is synthesized via state feedback controllers and updated adaptive laws. Specifically, the nested back-propagation neural networks are developed by grouping and layering the hidden neurons using the principle of partition of unity and the state domain for modularizing the concealed layer. Finally, a numerical example is given to illustrate the effectiveness of this method.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization control for completely unknown chaotic systems via nested back-propagation neural networks\",\"authors\":\"Xiaolin Song, Zilin Gao, Xitao Zou, Liyuan Qi, Yuan Luo\",\"doi\":\"10.1109/ICACI52617.2021.9435885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of existing chaotic systems with unknown nonlinearities, enormous parameters and external disturbances, in this paper, a synchronization controller with parameter adaptive laws is proposed based on nested back-propagation neural networks and the adaptive method, where the nested back-propagation neural networks are used to approximate the unknown nonlinearities based on same experiences and the unknown parameters are estimated by the adaptive method. Then the asymptotical synchronization of the drive-response chaotic systems is synthesized via state feedback controllers and updated adaptive laws. Specifically, the nested back-propagation neural networks are developed by grouping and layering the hidden neurons using the principle of partition of unity and the state domain for modularizing the concealed layer. Finally, a numerical example is given to illustrate the effectiveness of this method.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对现有混沌系统中存在的非线性未知、参数巨大、外部干扰的问题,本文提出了一种基于嵌套反向传播神经网络和自适应方法的参数自适应同步控制器,利用嵌套反向传播神经网络对基于相同经验的未知非线性进行近似,并用自适应方法对未知参数进行估计。然后通过状态反馈控制器和更新的自适应律综合驱动-响应混沌系统的渐近同步。具体而言,利用单位划分原理和状态域对隐层进行模块化,将隐层神经元分组分层,形成嵌套式反向传播神经网络。最后通过数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization control for completely unknown chaotic systems via nested back-propagation neural networks
To solve the problem of existing chaotic systems with unknown nonlinearities, enormous parameters and external disturbances, in this paper, a synchronization controller with parameter adaptive laws is proposed based on nested back-propagation neural networks and the adaptive method, where the nested back-propagation neural networks are used to approximate the unknown nonlinearities based on same experiences and the unknown parameters are estimated by the adaptive method. Then the asymptotical synchronization of the drive-response chaotic systems is synthesized via state feedback controllers and updated adaptive laws. Specifically, the nested back-propagation neural networks are developed by grouping and layering the hidden neurons using the principle of partition of unity and the state domain for modularizing the concealed layer. Finally, a numerical example is given to illustrate the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信