基于混合遗传算法的智能流水车间生产计划与调度优化

P. Semanco, V. Modrák
{"title":"基于混合遗传算法的智能流水车间生产计划与调度优化","authors":"P. Semanco, V. Modrák","doi":"10.1109/INES.2011.5954777","DOIUrl":null,"url":null,"abstract":"The paper introduces a proposal of three-metaheuristic versions to optimize flow-shop problem emphasized on total flow time criterion in Intelligent Manufacturing Systems. The approach employs constructive heuristic, namely CDS, Gupta's algorithm, and Palmer's Slope Index, in conjunction with GA-based metaheuristic. The approach is tested on Reeves' benchmark set of 21 flow-shop problems range from 20 to 75 jobs and 5 to 20 machines.","PeriodicalId":414812,"journal":{"name":"2011 15th IEEE International Conference on Intelligent Engineering Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid GA-based metaheuristics for production planning and scheduling optimization in intelligent flow-shop manufacturing systems\",\"authors\":\"P. Semanco, V. Modrák\",\"doi\":\"10.1109/INES.2011.5954777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a proposal of three-metaheuristic versions to optimize flow-shop problem emphasized on total flow time criterion in Intelligent Manufacturing Systems. The approach employs constructive heuristic, namely CDS, Gupta's algorithm, and Palmer's Slope Index, in conjunction with GA-based metaheuristic. The approach is tested on Reeves' benchmark set of 21 flow-shop problems range from 20 to 75 jobs and 5 to 20 machines.\",\"PeriodicalId\":414812,\"journal\":{\"name\":\"2011 15th IEEE International Conference on Intelligent Engineering Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 15th IEEE International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2011.5954777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 15th IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2011.5954777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种以智能制造系统中总流时间准则为重点的三元启发式优化方法。该方法采用建设性启发式,即CDS,古普塔算法和帕尔默斜率指数,结合基于遗传算法的元启发式。该方法在Reeves的21个流程车间问题基准集上进行了测试,这些问题包括20到75个工作岗位和5到20台机器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid GA-based metaheuristics for production planning and scheduling optimization in intelligent flow-shop manufacturing systems
The paper introduces a proposal of three-metaheuristic versions to optimize flow-shop problem emphasized on total flow time criterion in Intelligent Manufacturing Systems. The approach employs constructive heuristic, namely CDS, Gupta's algorithm, and Palmer's Slope Index, in conjunction with GA-based metaheuristic. The approach is tested on Reeves' benchmark set of 21 flow-shop problems range from 20 to 75 jobs and 5 to 20 machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信