结合时频图像和信号特征对脑电图信号中癫痫发作活动的检测和分类的有效性

L. Boubchir, S. Al-Maadeed, A. Bouridane
{"title":"结合时频图像和信号特征对脑电图信号中癫痫发作活动的检测和分类的有效性","authors":"L. Boubchir, S. Al-Maadeed, A. Bouridane","doi":"10.1109/CoDIT.2014.6996977","DOIUrl":null,"url":null,"abstract":"This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu's thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier.","PeriodicalId":161703,"journal":{"name":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals\",\"authors\":\"L. Boubchir, S. Al-Maadeed, A. Bouridane\",\"doi\":\"10.1109/CoDIT.2014.6996977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu's thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier.\",\"PeriodicalId\":161703,\"journal\":{\"name\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT.2014.6996977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2014.6996977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了新的时频特征,以改进脑电图信号中癫痫发作活动的检测和分类。以往的方法大多只基于不同谱子带产生的脑电信号的瞬时频率和能量的信号特征。所提出的特征是基于从EEG信号的T-F表示中提取的T-F图像描述子,使用图像处理技术将其作为图像进行考虑和处理。所提出的特征提取方法的思想是基于Otsu阈值算法在T-F图像上的应用,以检测癫痫发作活动出现的感兴趣区域。然后定义所提出的T-F图像相关特征来描述检测区域的统计和几何特征。在真实脑电数据上得到的结果表明,使用基于T-F图像的特征与信号相关的特征相结合,使用多类SVM分类器对120个脑电信号进行脑电图发作检测和分类的性能提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals
This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu's thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信