受外部因素影响的通信系统的多项隐马尔可夫模型

Marina-Anca Cidotã, M. Dumitrescu
{"title":"受外部因素影响的通信系统的多项隐马尔可夫模型","authors":"Marina-Anca Cidotã, M. Dumitrescu","doi":"10.1109/SACI.2012.6250008","DOIUrl":null,"url":null,"abstract":"The paper proposes an extension of Hidden Markov models for communication systems that are influenced by external \"catalyzers\" (e.g. environmental or experimental conditions). A simpler version of the model, the Logistic HMM (LHMM), was already introduced by the authors. In comparison with LHMM, this new extension of HMM allows the catalyzer to have multiple components, expressing the influence over the system through multinomial link functions. A possible application of the Multinomial Hidden Markov model (MHMM) could be in bio-informatics for example, to predict under different external conditions (different quantities of calcium channel blockers CCB and some antioxidants AO) the behavior of the calcium channel that holds an essential part in controlling the blood pressure. We introduce a training algorithm for MHMM based on the BaumWelch scheme, including nested algorithms for optimization such as the Newton - Raphson and the Expectation-Maximization technique for updating the parameters of the model. In order to explore the convergence of the proposed training procedure, a simulation study is provided.","PeriodicalId":293436,"journal":{"name":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multinomial - Hidden Markov model for communication systems influenced by external factors\",\"authors\":\"Marina-Anca Cidotã, M. Dumitrescu\",\"doi\":\"10.1109/SACI.2012.6250008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes an extension of Hidden Markov models for communication systems that are influenced by external \\\"catalyzers\\\" (e.g. environmental or experimental conditions). A simpler version of the model, the Logistic HMM (LHMM), was already introduced by the authors. In comparison with LHMM, this new extension of HMM allows the catalyzer to have multiple components, expressing the influence over the system through multinomial link functions. A possible application of the Multinomial Hidden Markov model (MHMM) could be in bio-informatics for example, to predict under different external conditions (different quantities of calcium channel blockers CCB and some antioxidants AO) the behavior of the calcium channel that holds an essential part in controlling the blood pressure. We introduce a training algorithm for MHMM based on the BaumWelch scheme, including nested algorithms for optimization such as the Newton - Raphson and the Expectation-Maximization technique for updating the parameters of the model. In order to explore the convergence of the proposed training procedure, a simulation study is provided.\",\"PeriodicalId\":293436,\"journal\":{\"name\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2012.6250008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2012.6250008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了受外部“催化剂”(例如环境或实验条件)影响的通信系统的隐马尔可夫模型的扩展。该模型的一个更简单的版本,Logistic HMM (LHMM),已经被作者引入。与LHMM相比,这种新的HMM扩展允许催化剂具有多个组分,通过多项链接函数表达对系统的影响。多项隐马尔可夫模型(MHMM)的一个可能应用是生物信息学,例如,预测在不同的外部条件下(不同数量的钙通道阻滞剂CCB和一些抗氧化剂AO)钙通道的行为,钙通道在控制血压中起重要作用。我们介绍了一种基于BaumWelch方案的MHMM训练算法,包括用于优化的嵌套算法,如Newton - Raphson算法和用于更新模型参数的期望最大化技术。为了探索所提出的训练过程的收敛性,进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multinomial - Hidden Markov model for communication systems influenced by external factors
The paper proposes an extension of Hidden Markov models for communication systems that are influenced by external "catalyzers" (e.g. environmental or experimental conditions). A simpler version of the model, the Logistic HMM (LHMM), was already introduced by the authors. In comparison with LHMM, this new extension of HMM allows the catalyzer to have multiple components, expressing the influence over the system through multinomial link functions. A possible application of the Multinomial Hidden Markov model (MHMM) could be in bio-informatics for example, to predict under different external conditions (different quantities of calcium channel blockers CCB and some antioxidants AO) the behavior of the calcium channel that holds an essential part in controlling the blood pressure. We introduce a training algorithm for MHMM based on the BaumWelch scheme, including nested algorithms for optimization such as the Newton - Raphson and the Expectation-Maximization technique for updating the parameters of the model. In order to explore the convergence of the proposed training procedure, a simulation study is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信