自动姿态估计的范围图像在GPU上

Marcel Germann, Michael D. Breitenstein, H. Pfister, I. Park
{"title":"自动姿态估计的范围图像在GPU上","authors":"Marcel Germann, Michael D. Breitenstein, H. Pfister, I. Park","doi":"10.1109/3DIM.2007.13","DOIUrl":null,"url":null,"abstract":"Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data- parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.","PeriodicalId":442311,"journal":{"name":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Automatic Pose Estimation for Range Images on the GPU\",\"authors\":\"Marcel Germann, Michael D. Breitenstein, H. Pfister, I. Park\",\"doi\":\"10.1109/3DIM.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data- parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.\",\"PeriodicalId\":442311,\"journal\":{\"name\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

物体姿态(位置和方向)估计是许多计算机视觉应用中常见的任务。虽然存在许多方法,但大多数算法需要手动初始化,并且对光照变化,外观变化和部分遮挡缺乏鲁棒性。本文提出了一种基于三维模型与场景范围图像的形状匹配的无需手动初始化的快速自动姿态估计方法。我们开发了一个新的误差函数来比较输入的距离图像和预先计算的3D模型的距离图。我们利用现代图形硬件巨大的数据并行处理性能,对多幅距离图像并行计算误差函数,并将误差函数最小化。算法简单,能在1秒左右的时间内准确估计出混乱场景中部分遮挡物体的姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Pose Estimation for Range Images on the GPU
Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data- parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信