利用近似函数重用加速图像处理应用的潜力

L. D. Silveira, M. Brandalero, J. D. Souza, A. C. S. Beck
{"title":"利用近似函数重用加速图像处理应用的潜力","authors":"L. D. Silveira, M. Brandalero, J. D. Souza, A. C. S. Beck","doi":"10.1109/SBESC.2016.026","DOIUrl":null,"url":null,"abstract":"Function reuse is a promising approach to accelerate single-threaded applications and exceed the limits of instruction-level parallelism. This approach exploits the observation that certain functions are executed several times with the same inputs, producing the same output. Therefore, by saving its results once in a reuse table, it is possible to skip subsequent calls when the same set of inputs is found. However, the table tends to get very large, and functions with multiple input arguments make the fetching process extremely costly because all input values must be compared to the saved ones. In this work, we combine function reuse with approximation, exploiting the characteristic that some applications are naturally error-tolerant, to quickly access the table using a single key and reduce its size. By using two image-processing benchmarks from the AxBench suite, we show that traditional function reuse achieves a reuse rate close to 0% due to the diversity of inputs. However, by applying approximation, it is possible to trade quality for reuse rate and achieve almost 50% reuse rate with less than 6% quality degradation.","PeriodicalId":336703,"journal":{"name":"2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Potential of Accelerating Image-Processing Applications by Using Approximate Function Reuse\",\"authors\":\"L. D. Silveira, M. Brandalero, J. D. Souza, A. C. S. Beck\",\"doi\":\"10.1109/SBESC.2016.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function reuse is a promising approach to accelerate single-threaded applications and exceed the limits of instruction-level parallelism. This approach exploits the observation that certain functions are executed several times with the same inputs, producing the same output. Therefore, by saving its results once in a reuse table, it is possible to skip subsequent calls when the same set of inputs is found. However, the table tends to get very large, and functions with multiple input arguments make the fetching process extremely costly because all input values must be compared to the saved ones. In this work, we combine function reuse with approximation, exploiting the characteristic that some applications are naturally error-tolerant, to quickly access the table using a single key and reduce its size. By using two image-processing benchmarks from the AxBench suite, we show that traditional function reuse achieves a reuse rate close to 0% due to the diversity of inputs. However, by applying approximation, it is possible to trade quality for reuse rate and achieve almost 50% reuse rate with less than 6% quality degradation.\",\"PeriodicalId\":336703,\"journal\":{\"name\":\"2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBESC.2016.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBESC.2016.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

函数重用是一种很有前途的方法,可以加速单线程应用程序并超越指令级并行性的限制。这种方法利用了这样一种观察,即使用相同的输入多次执行某些函数,产生相同的输出。因此,通过在重用表中保存一次结果,可以在找到相同的输入集时跳过后续调用。然而,表往往会变得非常大,并且具有多个输入参数的函数使得获取过程非常昂贵,因为必须将所有输入值与保存的值进行比较。在这项工作中,我们将函数重用与近似结合起来,利用一些应用程序天生容错的特性,使用单个键快速访问表并减小其大小。通过使用来自AxBench套件的两个图像处理基准测试,我们表明,由于输入的多样性,传统的函数重用实现了接近0%的重用率。然而,通过应用近似值,可以用质量来换取重用率,并在不到6%的质量退化的情况下实现几乎50%的重用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Potential of Accelerating Image-Processing Applications by Using Approximate Function Reuse
Function reuse is a promising approach to accelerate single-threaded applications and exceed the limits of instruction-level parallelism. This approach exploits the observation that certain functions are executed several times with the same inputs, producing the same output. Therefore, by saving its results once in a reuse table, it is possible to skip subsequent calls when the same set of inputs is found. However, the table tends to get very large, and functions with multiple input arguments make the fetching process extremely costly because all input values must be compared to the saved ones. In this work, we combine function reuse with approximation, exploiting the characteristic that some applications are naturally error-tolerant, to quickly access the table using a single key and reduce its size. By using two image-processing benchmarks from the AxBench suite, we show that traditional function reuse achieves a reuse rate close to 0% due to the diversity of inputs. However, by applying approximation, it is possible to trade quality for reuse rate and achieve almost 50% reuse rate with less than 6% quality degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信