Vikas Reddy, Conrad Sanderson, A. Sanin, B. Lovell
{"title":"基于自适应补丁的背景建模改进前景目标分割和跟踪","authors":"Vikas Reddy, Conrad Sanderson, A. Sanin, B. Lovell","doi":"10.1109/AVSS.2010.84","DOIUrl":null,"url":null,"abstract":"A robust foreground object segmentation technique is proposed, capable of dealing with image sequences containing noise, illumination variations and dynamic backgrounds. The method employs contextual spatial information by analysing each image on an overlapping patch-by-patch basis and obtaining a low-dimensional texture descriptor for each patch. Each descriptor is passed through an adaptive multi-stage classifier, comprised of a likelihood evaluation, an illumination robust measure, and a temporal correlation check. A probabilistic foreground mask generation approach integrates the classification decisions by exploiting the overlapping of patches, ensuring smooth contours of the foreground objects as well as effectively minimising the number of errors. The parameter settings are robust against wide variety of sequences and post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed method obtains considerably better results (both qualitatively and quantitatively) than methods based on Gaussian mixture models, feature histograms, and normalised vector distances. Further experiments on the CAVIAR dataset (using several tracking algorithms) indicate that the proposed method leads to considerable improvements in object tracking accuracy.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Adaptive Patch-Based Background Modelling for Improved Foreground Object Segmentation and Tracking\",\"authors\":\"Vikas Reddy, Conrad Sanderson, A. Sanin, B. Lovell\",\"doi\":\"10.1109/AVSS.2010.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust foreground object segmentation technique is proposed, capable of dealing with image sequences containing noise, illumination variations and dynamic backgrounds. The method employs contextual spatial information by analysing each image on an overlapping patch-by-patch basis and obtaining a low-dimensional texture descriptor for each patch. Each descriptor is passed through an adaptive multi-stage classifier, comprised of a likelihood evaluation, an illumination robust measure, and a temporal correlation check. A probabilistic foreground mask generation approach integrates the classification decisions by exploiting the overlapping of patches, ensuring smooth contours of the foreground objects as well as effectively minimising the number of errors. The parameter settings are robust against wide variety of sequences and post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed method obtains considerably better results (both qualitatively and quantitatively) than methods based on Gaussian mixture models, feature histograms, and normalised vector distances. Further experiments on the CAVIAR dataset (using several tracking algorithms) indicate that the proposed method leads to considerable improvements in object tracking accuracy.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Patch-Based Background Modelling for Improved Foreground Object Segmentation and Tracking
A robust foreground object segmentation technique is proposed, capable of dealing with image sequences containing noise, illumination variations and dynamic backgrounds. The method employs contextual spatial information by analysing each image on an overlapping patch-by-patch basis and obtaining a low-dimensional texture descriptor for each patch. Each descriptor is passed through an adaptive multi-stage classifier, comprised of a likelihood evaluation, an illumination robust measure, and a temporal correlation check. A probabilistic foreground mask generation approach integrates the classification decisions by exploiting the overlapping of patches, ensuring smooth contours of the foreground objects as well as effectively minimising the number of errors. The parameter settings are robust against wide variety of sequences and post-processing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed method obtains considerably better results (both qualitatively and quantitatively) than methods based on Gaussian mixture models, feature histograms, and normalised vector distances. Further experiments on the CAVIAR dataset (using several tracking algorithms) indicate that the proposed method leads to considerable improvements in object tracking accuracy.