基于自适应神经模糊推理系统的脑电信号伪影去除

C. Kezi Selva Vijilal, P. Kanagasabapathy, Stanly Johnson Jeyaraj, V. Ewards
{"title":"基于自适应神经模糊推理系统的脑电信号伪影去除","authors":"C. Kezi Selva Vijilal, P. Kanagasabapathy, Stanly Johnson Jeyaraj, V. Ewards","doi":"10.1109/ICSCN.2007.350676","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid soft computing technique called adaptive neuro-fuzzy inference system (ANFIS) to estimate the interference and to separate the electroencephalogram (EEG) signal from its electrooculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) artifacts. This paper shows that the proposed method successfully removes the artifacts and extracts the desired EEG signal","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Artifacts Removal in EEG Signal using Adaptive Neuro Fuzzy Inference System\",\"authors\":\"C. Kezi Selva Vijilal, P. Kanagasabapathy, Stanly Johnson Jeyaraj, V. Ewards\",\"doi\":\"10.1109/ICSCN.2007.350676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a hybrid soft computing technique called adaptive neuro-fuzzy inference system (ANFIS) to estimate the interference and to separate the electroencephalogram (EEG) signal from its electrooculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) artifacts. This paper shows that the proposed method successfully removes the artifacts and extracts the desired EEG signal\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们提出了一种称为自适应神经模糊推理系统(ANFIS)的混合软计算技术来估计干扰,并将脑电图(EEG)信号从其眼电信号(EOG)、心电图(ECG)和肌电信号(EMG)伪影中分离出来。结果表明,该方法能够有效地去除伪影,提取出理想的脑电信号
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artifacts Removal in EEG Signal using Adaptive Neuro Fuzzy Inference System
In this paper, we propose a hybrid soft computing technique called adaptive neuro-fuzzy inference system (ANFIS) to estimate the interference and to separate the electroencephalogram (EEG) signal from its electrooculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) artifacts. This paper shows that the proposed method successfully removes the artifacts and extracts the desired EEG signal
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信