通风窗在办公建筑节能与室内空气质量同步提升中的性能评价

F. Khalvati, A. Omidvar
{"title":"通风窗在办公建筑节能与室内空气质量同步提升中的性能评价","authors":"F. Khalvati, A. Omidvar","doi":"10.54963/neea.v1i1.12","DOIUrl":null,"url":null,"abstract":"Energy efficiency and indoor air quality (IAQ) are two crucial required features in a building. Simultaneous improvement of energy efficiency and IAQ in a building can pave the way for obtaining a green building certification. This paper examined the performance of the airflow windows’ supply and exhaust operating modes in energy-saving and providing IAQ criteria. The analytical zonal model coupled with the airflow network model was used to evaluate the system’s thermal performance and the induced airflow. The simulation was done for an office building located in Shiraz, Iran. The results showed that the energy performance of ventilated windows is positive in nine months of the year. Compared to a conventional double-glazed window, the maximum energy savings is about 10%, which occurs in August. It is predicted that using ventilated windows in office buildings in Shiraz can improve the window’s thermal performance by an average of about 5%. The results also showed that ventilated windows could provide the fresh air needed for the building in 250 days of the year to achieve the desired IAQ index (based on ASHRAE 62.1 standard). Furthermore, the effects of glass aspect ratio, airflow channel thickness, and the size of inlet/outlet openings on energy efficiency and IAQ of the suggested window were studied. Results indicated that in the climatic conditions of Shiraz, the exhaust operating mode is much more efficient than the supply mode.","PeriodicalId":387818,"journal":{"name":"New Energy Exploitation and Application","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Performance Evaluation of Ventilated Windows in the Simultaneous Improvement of Energy Efficiency and Indoor Air Quality in Office Buildings: A Case Study\",\"authors\":\"F. Khalvati, A. Omidvar\",\"doi\":\"10.54963/neea.v1i1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency and indoor air quality (IAQ) are two crucial required features in a building. Simultaneous improvement of energy efficiency and IAQ in a building can pave the way for obtaining a green building certification. This paper examined the performance of the airflow windows’ supply and exhaust operating modes in energy-saving and providing IAQ criteria. The analytical zonal model coupled with the airflow network model was used to evaluate the system’s thermal performance and the induced airflow. The simulation was done for an office building located in Shiraz, Iran. The results showed that the energy performance of ventilated windows is positive in nine months of the year. Compared to a conventional double-glazed window, the maximum energy savings is about 10%, which occurs in August. It is predicted that using ventilated windows in office buildings in Shiraz can improve the window’s thermal performance by an average of about 5%. The results also showed that ventilated windows could provide the fresh air needed for the building in 250 days of the year to achieve the desired IAQ index (based on ASHRAE 62.1 standard). Furthermore, the effects of glass aspect ratio, airflow channel thickness, and the size of inlet/outlet openings on energy efficiency and IAQ of the suggested window were studied. Results indicated that in the climatic conditions of Shiraz, the exhaust operating mode is much more efficient than the supply mode.\",\"PeriodicalId\":387818,\"journal\":{\"name\":\"New Energy Exploitation and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Energy Exploitation and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54963/neea.v1i1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Energy Exploitation and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54963/neea.v1i1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能源效率和室内空气质量(IAQ)是建筑的两个重要特征。同时改善建筑物的能源效益和室内空气质素,可为获得绿色建筑认证铺平道路。本文考察了送风窗和排风窗的运行方式在节能和提供室内空气质量标准方面的性能。采用解析纬向模型和气流网络模型对系统的热性能和诱导气流进行了综合评价。该模拟是在位于伊朗设拉子的一栋办公楼中进行的。结果表明,通风窗的能源性能在一年中有9个月为正。与传统的双层玻璃窗相比,最大节能约为10%,发生在8月份。据预测,在设拉子地区的办公建筑中使用通风窗可以使窗户的热工性能平均提高5%左右。结果还表明,通风窗可以在一年中250天内提供建筑物所需的新鲜空气,以达到所需的室内空气质量指数(基于ASHRAE 62.1标准)。此外,还研究了玻璃宽高比、气流通道厚度和进/出口开口尺寸对建议窗口的能效和室内空气质量的影响。结果表明,在设拉子的气候条件下,排气运行模式比供气运行模式效率高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Performance Evaluation of Ventilated Windows in the Simultaneous Improvement of Energy Efficiency and Indoor Air Quality in Office Buildings: A Case Study
Energy efficiency and indoor air quality (IAQ) are two crucial required features in a building. Simultaneous improvement of energy efficiency and IAQ in a building can pave the way for obtaining a green building certification. This paper examined the performance of the airflow windows’ supply and exhaust operating modes in energy-saving and providing IAQ criteria. The analytical zonal model coupled with the airflow network model was used to evaluate the system’s thermal performance and the induced airflow. The simulation was done for an office building located in Shiraz, Iran. The results showed that the energy performance of ventilated windows is positive in nine months of the year. Compared to a conventional double-glazed window, the maximum energy savings is about 10%, which occurs in August. It is predicted that using ventilated windows in office buildings in Shiraz can improve the window’s thermal performance by an average of about 5%. The results also showed that ventilated windows could provide the fresh air needed for the building in 250 days of the year to achieve the desired IAQ index (based on ASHRAE 62.1 standard). Furthermore, the effects of glass aspect ratio, airflow channel thickness, and the size of inlet/outlet openings on energy efficiency and IAQ of the suggested window were studied. Results indicated that in the climatic conditions of Shiraz, the exhaust operating mode is much more efficient than the supply mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信