语音病理检测与分类的深度学习方法

Vikas Mittal, R. Sharma
{"title":"语音病理检测与分类的深度学习方法","authors":"Vikas Mittal, R. Sharma","doi":"10.4018/ijhisi.20211001.oa28","DOIUrl":null,"url":null,"abstract":"A non-invasive cum robust voice pathology detection and classification architecture is proposed in the current manuscript. In place of the conventional feature-based machine learning techniques, a new architecture is proposed herein which initially performs deep learning-based filtering of the input voice signal, followed by a decision-level fusion of deep learning and a non-parametric learner. The efficacy of the proposed technique is verified by performing a comparative study with very recent work on the same dataset but based on different training algorithms.The proposed architecture has five different stages.The results are recorded in terms of nine (9) different classification score indices which are – mean average Precision, sensitivity, specificity, F1 score, accuracy, error, false-positive rate, Matthews Correlation Coefficient, and the Cohen’s Kappa index. The experimental results have shown that the use of machine learning classifier can get at most 96.12% accuracy, while the proposed technique achieved the highest accuracy of 99.14% in comparison to other techniques.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning Approach for Voice Pathology Detection and Classification\",\"authors\":\"Vikas Mittal, R. Sharma\",\"doi\":\"10.4018/ijhisi.20211001.oa28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-invasive cum robust voice pathology detection and classification architecture is proposed in the current manuscript. In place of the conventional feature-based machine learning techniques, a new architecture is proposed herein which initially performs deep learning-based filtering of the input voice signal, followed by a decision-level fusion of deep learning and a non-parametric learner. The efficacy of the proposed technique is verified by performing a comparative study with very recent work on the same dataset but based on different training algorithms.The proposed architecture has five different stages.The results are recorded in terms of nine (9) different classification score indices which are – mean average Precision, sensitivity, specificity, F1 score, accuracy, error, false-positive rate, Matthews Correlation Coefficient, and the Cohen’s Kappa index. The experimental results have shown that the use of machine learning classifier can get at most 96.12% accuracy, while the proposed technique achieved the highest accuracy of 99.14% in comparison to other techniques.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijhisi.20211001.oa28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.20211001.oa28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种无创、鲁棒的语音病理检测与分类体系结构。为了取代传统的基于特征的机器学习技术,本文提出了一种新的体系结构,该体系结构首先对输入语音信号进行基于深度学习的滤波,然后将深度学习和非参数学习器进行决策级融合。通过与基于不同训练算法的相同数据集上的最新工作进行比较研究,验证了所提出技术的有效性。所建议的体系结构有五个不同的阶段。结果用9个不同的分类评分指标进行记录,分别是:平均精密度、灵敏度、特异性、F1评分、准确率、错误率、假阳性率、Matthews相关系数和Cohen’s Kappa指数。实验结果表明,使用机器学习分类器最多可以获得96.12%的准确率,而与其他技术相比,所提出的技术达到了99.14%的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Approach for Voice Pathology Detection and Classification
A non-invasive cum robust voice pathology detection and classification architecture is proposed in the current manuscript. In place of the conventional feature-based machine learning techniques, a new architecture is proposed herein which initially performs deep learning-based filtering of the input voice signal, followed by a decision-level fusion of deep learning and a non-parametric learner. The efficacy of the proposed technique is verified by performing a comparative study with very recent work on the same dataset but based on different training algorithms.The proposed architecture has five different stages.The results are recorded in terms of nine (9) different classification score indices which are – mean average Precision, sensitivity, specificity, F1 score, accuracy, error, false-positive rate, Matthews Correlation Coefficient, and the Cohen’s Kappa index. The experimental results have shown that the use of machine learning classifier can get at most 96.12% accuracy, while the proposed technique achieved the highest accuracy of 99.14% in comparison to other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信