基于Writer代码的深度神经网络自适应离线手写中文文本识别

Zirui Wang, Jun Du
{"title":"基于Writer代码的深度神经网络自适应离线手写中文文本识别","authors":"Zirui Wang, Jun Du","doi":"10.1109/ICFHR.2016.0106","DOIUrl":null,"url":null,"abstract":"Recently, we propose deep neural network based hidden Markov models (DNN-HMMs) for offline handwritten Chinese text recognition. In this study, we design a novel writer code based adaptation on top of the DNN-HMM to further improve the accuracy via a customized recognizer. The writer adaptation is implemented by incorporating the new layers with the original input or hidden layers of the writer-independent DNN. These new layers are driven by the so-called writer code, which guides and adapts the DNN-based recognizer with the writer information. In the training stage, the writer-aware layers are jointly learned with the conventional DNN layers in an alternative manner. In the recognition stage, with the initial recognition results from the first-pass decoding with the writer-independent DNN, an unsupervised adaptation is performed to generate the writer code via the cross-entropy criterion for the subsequent second-pass decoding. The experiments on the most challenging task of ICDAR 2013 Chinese handwriting competition show that our proposed adaptation approach can achieve consistent and significant improvements of recognition accuracy over a highperformance writer-independent DNN-HMM based recognizer across all 60 writers, yielding a relative character error rate reduction of 23.62% in average.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Writer Code Based Adaptation of Deep Neural Network for Offline Handwritten Chinese Text Recognition\",\"authors\":\"Zirui Wang, Jun Du\",\"doi\":\"10.1109/ICFHR.2016.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we propose deep neural network based hidden Markov models (DNN-HMMs) for offline handwritten Chinese text recognition. In this study, we design a novel writer code based adaptation on top of the DNN-HMM to further improve the accuracy via a customized recognizer. The writer adaptation is implemented by incorporating the new layers with the original input or hidden layers of the writer-independent DNN. These new layers are driven by the so-called writer code, which guides and adapts the DNN-based recognizer with the writer information. In the training stage, the writer-aware layers are jointly learned with the conventional DNN layers in an alternative manner. In the recognition stage, with the initial recognition results from the first-pass decoding with the writer-independent DNN, an unsupervised adaptation is performed to generate the writer code via the cross-entropy criterion for the subsequent second-pass decoding. The experiments on the most challenging task of ICDAR 2013 Chinese handwriting competition show that our proposed adaptation approach can achieve consistent and significant improvements of recognition accuracy over a highperformance writer-independent DNN-HMM based recognizer across all 60 writers, yielding a relative character error rate reduction of 23.62% in average.\",\"PeriodicalId\":194844,\"journal\":{\"name\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2016.0106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

最近,我们提出了基于深度神经网络的隐马尔可夫模型(dnn - hmm)用于离线手写中文文本识别。在本研究中,我们在DNN-HMM的基础上设计了一种新颖的基于自适应的书写器代码,通过自定义识别器进一步提高准确率。写入器自适应是通过将新层与与写入器无关的DNN的原始输入或隐藏层合并来实现的。这些新层是由所谓的写入代码驱动的,它引导并调整基于dnn的识别器与写入信息。在训练阶段,作者感知层以另一种方式与传统深度神经网络层联合学习。在识别阶段,使用与写入器无关的DNN进行第一遍解码的初始识别结果,执行无监督自适应,通过交叉熵准则为随后的第二遍解码生成写入器代码。在ICDAR 2013中文手写比赛最具挑战性的任务上进行的实验表明,我们提出的自适应方法可以在所有60个书写器中获得与高性能书写器无关的基于DNN-HMM的识别器一致且显著的识别精度提高,相对错误率平均降低23.62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Writer Code Based Adaptation of Deep Neural Network for Offline Handwritten Chinese Text Recognition
Recently, we propose deep neural network based hidden Markov models (DNN-HMMs) for offline handwritten Chinese text recognition. In this study, we design a novel writer code based adaptation on top of the DNN-HMM to further improve the accuracy via a customized recognizer. The writer adaptation is implemented by incorporating the new layers with the original input or hidden layers of the writer-independent DNN. These new layers are driven by the so-called writer code, which guides and adapts the DNN-based recognizer with the writer information. In the training stage, the writer-aware layers are jointly learned with the conventional DNN layers in an alternative manner. In the recognition stage, with the initial recognition results from the first-pass decoding with the writer-independent DNN, an unsupervised adaptation is performed to generate the writer code via the cross-entropy criterion for the subsequent second-pass decoding. The experiments on the most challenging task of ICDAR 2013 Chinese handwriting competition show that our proposed adaptation approach can achieve consistent and significant improvements of recognition accuracy over a highperformance writer-independent DNN-HMM based recognizer across all 60 writers, yielding a relative character error rate reduction of 23.62% in average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信