隐马尔可夫域的MCMC联合分离与分割

H. Snoussi, A. Mohammad-Djafari
{"title":"隐马尔可夫域的MCMC联合分离与分割","authors":"H. Snoussi, A. Mohammad-Djafari","doi":"10.1109/NNSP.2002.1030060","DOIUrl":null,"url":null,"abstract":"We consider the problem of the blind separation of noisy instantaneously mixed images. The images are modelized by hidden Markov fields with unknown parameters. Given the observed images, we give a Bayesian formulation and we propose to solve the resulting data augmentation problem by implementing a Monte Carlo Markov chain (MCMC) procedure. We separate the unknown variables into two categories: (1) the parameters of interest which are the mixing matrix, the noise covariance and the parameters of the sources distributions; and (2) the hidden variables which are the unobserved sources and the unobserved pixels classification labels. The proposed algorithm provides in the stationary regime samples drawn from the posterior distributions of all the variables involved in the problem leading to a flexibility in the cost function choice. We discuss and characterize some problems of non-identifiability and degeneracies of the parameters likelihood and the behavior of the MCMC algorithm in this case. Finally, we show the results for both synthetic and real data to illustrate the feasibility of the proposed solution.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MCMC joint separation and segmentation of hidden Markov fields\",\"authors\":\"H. Snoussi, A. Mohammad-Djafari\",\"doi\":\"10.1109/NNSP.2002.1030060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of the blind separation of noisy instantaneously mixed images. The images are modelized by hidden Markov fields with unknown parameters. Given the observed images, we give a Bayesian formulation and we propose to solve the resulting data augmentation problem by implementing a Monte Carlo Markov chain (MCMC) procedure. We separate the unknown variables into two categories: (1) the parameters of interest which are the mixing matrix, the noise covariance and the parameters of the sources distributions; and (2) the hidden variables which are the unobserved sources and the unobserved pixels classification labels. The proposed algorithm provides in the stationary regime samples drawn from the posterior distributions of all the variables involved in the problem leading to a flexibility in the cost function choice. We discuss and characterize some problems of non-identifiability and degeneracies of the parameters likelihood and the behavior of the MCMC algorithm in this case. Finally, we show the results for both synthetic and real data to illustrate the feasibility of the proposed solution.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了噪声瞬时混合图像的盲分离问题。利用隐马尔可夫域对图像进行建模。对于观察到的图像,我们给出了一个贝叶斯公式,并提出通过实现蒙特卡洛马尔可夫链(MCMC)过程来解决由此产生的数据增强问题。我们将未知变量分为两类:(1)感兴趣的参数是混合矩阵、噪声协方差和源分布的参数;(2)隐含变量,即未观测到的源和未观测到的像素分类标签。该算法在平稳状态下提供从问题中涉及的所有变量的后验分布中提取的样本,从而使成本函数的选择具有灵活性。在这种情况下,我们讨论了MCMC算法的不可辨识性、参数似然性和行为的退化问题。最后,我们给出了合成数据和实际数据的结果,以说明所提出的解决方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCMC joint separation and segmentation of hidden Markov fields
We consider the problem of the blind separation of noisy instantaneously mixed images. The images are modelized by hidden Markov fields with unknown parameters. Given the observed images, we give a Bayesian formulation and we propose to solve the resulting data augmentation problem by implementing a Monte Carlo Markov chain (MCMC) procedure. We separate the unknown variables into two categories: (1) the parameters of interest which are the mixing matrix, the noise covariance and the parameters of the sources distributions; and (2) the hidden variables which are the unobserved sources and the unobserved pixels classification labels. The proposed algorithm provides in the stationary regime samples drawn from the posterior distributions of all the variables involved in the problem leading to a flexibility in the cost function choice. We discuss and characterize some problems of non-identifiability and degeneracies of the parameters likelihood and the behavior of the MCMC algorithm in this case. Finally, we show the results for both synthetic and real data to illustrate the feasibility of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信