用于为植入式神经微系统供电的毫米级集成线圈

Peilong Feng, T. Constandinou, Pyungwoo Yeon, Maysam Ghovanloo
{"title":"用于为植入式神经微系统供电的毫米级集成线圈","authors":"Peilong Feng, T. Constandinou, Pyungwoo Yeon, Maysam Ghovanloo","doi":"10.1109/BIOCAS.2017.8325184","DOIUrl":null,"url":null,"abstract":"Next generation brain machine interfaces are targeting millimeter-scale implants that are freely floating and completely wireless. It is essential these systems achieve good power transmission efficiency but are also compatible with microsystem technologies. This paper presents two schemes for implementing mm-scale coils for power delivery by electromagnetic coupling — on-chip and wire-wound. A set of on-chip coils have been fabricated using a 0.35 μm CMOS technology with thick top metal option (3 μm aluminium). These achieve a maximum Q-factor of 16.37. The second approach describes wire-wound coils that have been fabricated using bondwire (25 μm gold), achieving a Q-factor of 24.54. This work develops the relevant analytical models, equivalent simulation models, and reports results using both finite element modeling (simulation) and experimental measurement of the fabricated devices. Finally, we compare results and discuss the relative merits of each approach.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Millimeter-scale integrated and wirewound coils for powering implantable neural microsystems\",\"authors\":\"Peilong Feng, T. Constandinou, Pyungwoo Yeon, Maysam Ghovanloo\",\"doi\":\"10.1109/BIOCAS.2017.8325184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next generation brain machine interfaces are targeting millimeter-scale implants that are freely floating and completely wireless. It is essential these systems achieve good power transmission efficiency but are also compatible with microsystem technologies. This paper presents two schemes for implementing mm-scale coils for power delivery by electromagnetic coupling — on-chip and wire-wound. A set of on-chip coils have been fabricated using a 0.35 μm CMOS technology with thick top metal option (3 μm aluminium). These achieve a maximum Q-factor of 16.37. The second approach describes wire-wound coils that have been fabricated using bondwire (25 μm gold), achieving a Q-factor of 24.54. This work develops the relevant analytical models, equivalent simulation models, and reports results using both finite element modeling (simulation) and experimental measurement of the fabricated devices. Finally, we compare results and discuss the relative merits of each approach.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

下一代脑机接口的目标是毫米级的植入物,可以自由漂浮,完全无线。这些系统既要有良好的动力传输效率,又要与微系统技术兼容。本文提出了两种实现毫米级电磁耦合供电线圈的方案:片上耦合方案和线绕方案。采用0.35 μm CMOS技术制作了一组片上线圈,顶部金属选项厚(3 μm铝)。它们的最大q因子为16.37。第二种方法描述了使用键合线(25 μm金)制造的线绕线圈,其q因子为24.54。这项工作开发了相关的分析模型,等效仿真模型,并报告了使用有限元建模(仿真)和实验测量的结果。最后,我们比较了结果并讨论了每种方法的相对优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Millimeter-scale integrated and wirewound coils for powering implantable neural microsystems
Next generation brain machine interfaces are targeting millimeter-scale implants that are freely floating and completely wireless. It is essential these systems achieve good power transmission efficiency but are also compatible with microsystem technologies. This paper presents two schemes for implementing mm-scale coils for power delivery by electromagnetic coupling — on-chip and wire-wound. A set of on-chip coils have been fabricated using a 0.35 μm CMOS technology with thick top metal option (3 μm aluminium). These achieve a maximum Q-factor of 16.37. The second approach describes wire-wound coils that have been fabricated using bondwire (25 μm gold), achieving a Q-factor of 24.54. This work develops the relevant analytical models, equivalent simulation models, and reports results using both finite element modeling (simulation) and experimental measurement of the fabricated devices. Finally, we compare results and discuss the relative merits of each approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信