从社交数据自动生成事件时间轴

Omar Alonso, S. Tremblay, Fernando Diaz
{"title":"从社交数据自动生成事件时间轴","authors":"Omar Alonso, S. Tremblay, Fernando Diaz","doi":"10.1145/3091478.3091519","DOIUrl":null,"url":null,"abstract":"Over the past few years, social media has seen phenomenal growth and has become a very important source for getting real time updates from different parts of the world. While the notion of a trend usually reflects current events, the amount of information accumulated over a period of time can be used to provide another perspective for such events in the form of a timeline. In this paper, we present a technique that uses social information as relevance surrogates to generate an informative timeline. A core component is a variation of pseudo relevance feedback that is automatically generated using social data without external evidence. Finally, we describe the implementation of such technique and present evaluation results using a real-world data set.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Generation of Event Timelines from Social Data\",\"authors\":\"Omar Alonso, S. Tremblay, Fernando Diaz\",\"doi\":\"10.1145/3091478.3091519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few years, social media has seen phenomenal growth and has become a very important source for getting real time updates from different parts of the world. While the notion of a trend usually reflects current events, the amount of information accumulated over a period of time can be used to provide another perspective for such events in the form of a timeline. In this paper, we present a technique that uses social information as relevance surrogates to generate an informative timeline. A core component is a variation of pseudo relevance feedback that is automatically generated using social data without external evidence. Finally, we describe the implementation of such technique and present evaluation results using a real-world data set.\",\"PeriodicalId\":165747,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3091478.3091519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在过去的几年里,社交媒体取得了惊人的增长,并已成为获取世界各地实时更新的非常重要的来源。虽然趋势的概念通常反映当前事件,但在一段时间内积累的信息量可用于以时间轴的形式为此类事件提供另一种视角。在本文中,我们提出了一种使用社会信息作为相关性替代品来生成信息时间表的技术。一个核心组件是伪相关反馈的变体,它是在没有外部证据的情况下使用社交数据自动生成的。最后,我们描述了这种技术的实现,并使用真实世界的数据集给出了评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Event Timelines from Social Data
Over the past few years, social media has seen phenomenal growth and has become a very important source for getting real time updates from different parts of the world. While the notion of a trend usually reflects current events, the amount of information accumulated over a period of time can be used to provide another perspective for such events in the form of a timeline. In this paper, we present a technique that uses social information as relevance surrogates to generate an informative timeline. A core component is a variation of pseudo relevance feedback that is automatically generated using social data without external evidence. Finally, we describe the implementation of such technique and present evaluation results using a real-world data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信