{"title":"双转子MIMO系统的动态建模与最优控制","authors":"S. Ahmad, A. Chipperfield, O. Tokhi","doi":"10.1109/NAECON.2000.894937","DOIUrl":null,"url":null,"abstract":"A dynamic model for the characterising of a one-degree-of-freedom (DOF) twin rotor MIMO system (TRMS) in hover is extracted using a black-box system identification technique. The behaviour of the TRMS in certain aspects resembles that of a helicopter. Hence, it is an interesting identification and control problem. Identification for a 1-DOF rigid-body, discrete-time linear model is presented. The extracted model is employed in the design of a feedback LQG compensator. This has a good tracking capability, but requires high control effort and has inadequate authority over residual vibration of the system. These problems are resolved by further augmenting the system with a command path prefilter. The combined feedforward and feedback compensator satisfies the performance objectives and obeys the actuator constraint.","PeriodicalId":171131,"journal":{"name":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Dynamic modeling and optimal control of a twin rotor MIMO system\",\"authors\":\"S. Ahmad, A. Chipperfield, O. Tokhi\",\"doi\":\"10.1109/NAECON.2000.894937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic model for the characterising of a one-degree-of-freedom (DOF) twin rotor MIMO system (TRMS) in hover is extracted using a black-box system identification technique. The behaviour of the TRMS in certain aspects resembles that of a helicopter. Hence, it is an interesting identification and control problem. Identification for a 1-DOF rigid-body, discrete-time linear model is presented. The extracted model is employed in the design of a feedback LQG compensator. This has a good tracking capability, but requires high control effort and has inadequate authority over residual vibration of the system. These problems are resolved by further augmenting the system with a command path prefilter. The combined feedforward and feedback compensator satisfies the performance objectives and obeys the actuator constraint.\",\"PeriodicalId\":171131,\"journal\":{\"name\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2000.894937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2000.894937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic modeling and optimal control of a twin rotor MIMO system
A dynamic model for the characterising of a one-degree-of-freedom (DOF) twin rotor MIMO system (TRMS) in hover is extracted using a black-box system identification technique. The behaviour of the TRMS in certain aspects resembles that of a helicopter. Hence, it is an interesting identification and control problem. Identification for a 1-DOF rigid-body, discrete-time linear model is presented. The extracted model is employed in the design of a feedback LQG compensator. This has a good tracking capability, but requires high control effort and has inadequate authority over residual vibration of the system. These problems are resolved by further augmenting the system with a command path prefilter. The combined feedforward and feedback compensator satisfies the performance objectives and obeys the actuator constraint.