染色体结构的高性能计算建模

Y. Eidelman, S. Slanina, O. A. Gusev, S. Andreev
{"title":"染色体结构的高性能计算建模","authors":"Y. Eidelman, S. Slanina, O. A. Gusev, S. Andreev","doi":"10.14529/jsfi180305","DOIUrl":null,"url":null,"abstract":"We present a polymer modeling approach to generate the ensemble of 3D chromosome conformations at different time points of mitosis-interphase transition. Dynamics of structure during mitosis-G1 transition indicates quick and slow stages of chromosome shape alterations. At intermediate and late time scale the changes in chromosome compaction are small. To assess time dependence of contact map establishment during G1 we calculate contact maps at different times after mitotic decondensation. We demonstrate that the patterns of contacts observed soon after mitotic decondensation remain similar during G1. Whole contact map for mouse chromosome 18 at late G1 time correlates with the experimental chromosome conformation capture data. The simulations reproduce the main experimental findings, contact map persistence during G1 as well as specific pattern of long-range interactions in interphase chromosome. Our results suggest that spatial compartmentalization of an interphase chromosome is driven by interactions between different types of megabase sized chromatin domains during the formation of globular chromosome state at the end of mitotis to G1 transition.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance Computational Modeling of Chromosome Structure\",\"authors\":\"Y. Eidelman, S. Slanina, O. A. Gusev, S. Andreev\",\"doi\":\"10.14529/jsfi180305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a polymer modeling approach to generate the ensemble of 3D chromosome conformations at different time points of mitosis-interphase transition. Dynamics of structure during mitosis-G1 transition indicates quick and slow stages of chromosome shape alterations. At intermediate and late time scale the changes in chromosome compaction are small. To assess time dependence of contact map establishment during G1 we calculate contact maps at different times after mitotic decondensation. We demonstrate that the patterns of contacts observed soon after mitotic decondensation remain similar during G1. Whole contact map for mouse chromosome 18 at late G1 time correlates with the experimental chromosome conformation capture data. The simulations reproduce the main experimental findings, contact map persistence during G1 as well as specific pattern of long-range interactions in interphase chromosome. Our results suggest that spatial compartmentalization of an interphase chromosome is driven by interactions between different types of megabase sized chromatin domains during the formation of globular chromosome state at the end of mitotis to G1 transition.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/jsfi180305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi180305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种聚合物建模方法来生成在有丝分裂-期间过渡的不同时间点的三维染色体构象集合。有丝分裂- g1过渡期间的结构动力学表明染色体形状改变的快速和缓慢阶段。在中后期,染色体压实的变化很小。为了评估G1期间接触图谱建立的时间依赖性,我们计算了有丝分裂去浓缩后不同时间的接触图谱。我们证明,在有丝分裂去浓缩后不久观察到的接触模式在G1期间保持相似。G1后期小鼠18号染色体的全接触图谱与实验染色体构象捕获数据相关。模拟重现了主要的实验结果,G1期间接触图的持久性以及间期染色体远程相互作用的特定模式。我们的研究结果表明,间期染色体的空间区隔是由不同类型的大碱基大小的染色质结构域之间的相互作用驱动的,在有丝分裂结束时形成球状染色体状态到G1过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance Computational Modeling of Chromosome Structure
We present a polymer modeling approach to generate the ensemble of 3D chromosome conformations at different time points of mitosis-interphase transition. Dynamics of structure during mitosis-G1 transition indicates quick and slow stages of chromosome shape alterations. At intermediate and late time scale the changes in chromosome compaction are small. To assess time dependence of contact map establishment during G1 we calculate contact maps at different times after mitotic decondensation. We demonstrate that the patterns of contacts observed soon after mitotic decondensation remain similar during G1. Whole contact map for mouse chromosome 18 at late G1 time correlates with the experimental chromosome conformation capture data. The simulations reproduce the main experimental findings, contact map persistence during G1 as well as specific pattern of long-range interactions in interphase chromosome. Our results suggest that spatial compartmentalization of an interphase chromosome is driven by interactions between different types of megabase sized chromatin domains during the formation of globular chromosome state at the end of mitotis to G1 transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信