Marina Pominova, Alexey Artemov, M. Sharaev, E. Kondrateva, A. Bernstein, Evgeny Burnaev
{"title":"从结构和功能MRI数据中诊断癫痫和抑郁症的体素三维卷积和循环神经网络","authors":"Marina Pominova, Alexey Artemov, M. Sharaev, E. Kondrateva, A. Bernstein, Evgeny Burnaev","doi":"10.1109/ICDMW.2018.00050","DOIUrl":null,"url":null,"abstract":"In the field of psychoneurology, analysis of neuroimaging data aimed at extracting distinctive patterns of pathologies, such as epilepsy and depression, is well known to represent a challenging problem. As the resolution and acquisition rates of modern medical scanners rise, the need to automatically capture complex spatiotemporal patterns in large imaging arrays suggests using automated approaches to pattern recognition in volumetric images, such as training a classification models using deep learning. On the other hand, with typically scarce training data, the choice of a particular neural network architecture remains an unresolved issue. In this work, we evaluate off-the-shelf building blocks of deep voxelwise neural architectures with the goal of learning robust decision rules in computational psychiatry. To this end, we carry out a series of computational experiments, aiming at the recognition of epilepsy and depression on structural (3D) and functional (4D) MRI data. We discover that our investigated models perform on par with computational approaches known in literature, without the need for sophisticated preprocessing and feature extraction.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Voxelwise 3D Convolutional and Recurrent Neural Networks for Epilepsy and Depression Diagnostics from Structural and Functional MRI Data\",\"authors\":\"Marina Pominova, Alexey Artemov, M. Sharaev, E. Kondrateva, A. Bernstein, Evgeny Burnaev\",\"doi\":\"10.1109/ICDMW.2018.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of psychoneurology, analysis of neuroimaging data aimed at extracting distinctive patterns of pathologies, such as epilepsy and depression, is well known to represent a challenging problem. As the resolution and acquisition rates of modern medical scanners rise, the need to automatically capture complex spatiotemporal patterns in large imaging arrays suggests using automated approaches to pattern recognition in volumetric images, such as training a classification models using deep learning. On the other hand, with typically scarce training data, the choice of a particular neural network architecture remains an unresolved issue. In this work, we evaluate off-the-shelf building blocks of deep voxelwise neural architectures with the goal of learning robust decision rules in computational psychiatry. To this end, we carry out a series of computational experiments, aiming at the recognition of epilepsy and depression on structural (3D) and functional (4D) MRI data. We discover that our investigated models perform on par with computational approaches known in literature, without the need for sophisticated preprocessing and feature extraction.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Voxelwise 3D Convolutional and Recurrent Neural Networks for Epilepsy and Depression Diagnostics from Structural and Functional MRI Data
In the field of psychoneurology, analysis of neuroimaging data aimed at extracting distinctive patterns of pathologies, such as epilepsy and depression, is well known to represent a challenging problem. As the resolution and acquisition rates of modern medical scanners rise, the need to automatically capture complex spatiotemporal patterns in large imaging arrays suggests using automated approaches to pattern recognition in volumetric images, such as training a classification models using deep learning. On the other hand, with typically scarce training data, the choice of a particular neural network architecture remains an unresolved issue. In this work, we evaluate off-the-shelf building blocks of deep voxelwise neural architectures with the goal of learning robust decision rules in computational psychiatry. To this end, we carry out a series of computational experiments, aiming at the recognition of epilepsy and depression on structural (3D) and functional (4D) MRI data. We discover that our investigated models perform on par with computational approaches known in literature, without the need for sophisticated preprocessing and feature extraction.