A. Gangwar, Akanksha Joshi, Ashutosh Singh, F. Alonso-Fernandez, J. Bigün
{"title":"irissig:针对非理想虹膜图像的快速、鲁棒的虹膜分割框架","authors":"A. Gangwar, Akanksha Joshi, Ashutosh Singh, F. Alonso-Fernandez, J. Bigün","doi":"10.1109/ICB.2016.7550096","DOIUrl":null,"url":null,"abstract":"This paper presents a state-of-the-art iris segmentation framework specifically for non-ideal irises. The framework adopts coarse-to-fine strategy to localize different boundaries. In the approach, pupil is coarsely detected using an iterative search method exploiting dynamic thresholding and multiple local cues. The limbic boundary is first approximated in polar space using adaptive filters and then refined in Cartesian space. The framework is quite robust and unlike the previously reported works, does not require tuning of parameters for different databases. The segmentation accuracy (SA) is evaluated using well known measures; precision, recall and F-measure, using the publicly available ground truth data for challenging iris databases; CASIAV4-Interval, ND-IRIS-0405, and IITD. In addition, the approach is also evaluated on highly challenging periocular images of FOCS database. The validity of proposed framework is also ascertained by providing comprehensive comparisons with classical approaches as well as state-of-the-art methods such as; CAHT, WAHET, IFFP, GST and Osiris v4.1. The results demonstrate that our approach provides significant improvements in segmentation accuracy as well as in recognition performance that too with lower computational complexity.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"IrisSeg: A fast and robust iris segmentation framework for non-ideal iris images\",\"authors\":\"A. Gangwar, Akanksha Joshi, Ashutosh Singh, F. Alonso-Fernandez, J. Bigün\",\"doi\":\"10.1109/ICB.2016.7550096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a state-of-the-art iris segmentation framework specifically for non-ideal irises. The framework adopts coarse-to-fine strategy to localize different boundaries. In the approach, pupil is coarsely detected using an iterative search method exploiting dynamic thresholding and multiple local cues. The limbic boundary is first approximated in polar space using adaptive filters and then refined in Cartesian space. The framework is quite robust and unlike the previously reported works, does not require tuning of parameters for different databases. The segmentation accuracy (SA) is evaluated using well known measures; precision, recall and F-measure, using the publicly available ground truth data for challenging iris databases; CASIAV4-Interval, ND-IRIS-0405, and IITD. In addition, the approach is also evaluated on highly challenging periocular images of FOCS database. The validity of proposed framework is also ascertained by providing comprehensive comparisons with classical approaches as well as state-of-the-art methods such as; CAHT, WAHET, IFFP, GST and Osiris v4.1. The results demonstrate that our approach provides significant improvements in segmentation accuracy as well as in recognition performance that too with lower computational complexity.\",\"PeriodicalId\":308715,\"journal\":{\"name\":\"2016 International Conference on Biometrics (ICB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2016.7550096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IrisSeg: A fast and robust iris segmentation framework for non-ideal iris images
This paper presents a state-of-the-art iris segmentation framework specifically for non-ideal irises. The framework adopts coarse-to-fine strategy to localize different boundaries. In the approach, pupil is coarsely detected using an iterative search method exploiting dynamic thresholding and multiple local cues. The limbic boundary is first approximated in polar space using adaptive filters and then refined in Cartesian space. The framework is quite robust and unlike the previously reported works, does not require tuning of parameters for different databases. The segmentation accuracy (SA) is evaluated using well known measures; precision, recall and F-measure, using the publicly available ground truth data for challenging iris databases; CASIAV4-Interval, ND-IRIS-0405, and IITD. In addition, the approach is also evaluated on highly challenging periocular images of FOCS database. The validity of proposed framework is also ascertained by providing comprehensive comparisons with classical approaches as well as state-of-the-art methods such as; CAHT, WAHET, IFFP, GST and Osiris v4.1. The results demonstrate that our approach provides significant improvements in segmentation accuracy as well as in recognition performance that too with lower computational complexity.