Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu
{"title":"利用深度语义特征和迁移知识改进故障定位和程序修复","authors":"Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu","doi":"10.1145/3510003.3510147","DOIUrl":null,"url":null,"abstract":"Automatic software debugging mainly includes two tasks of fault lo-calization and automated program repair. Compared with the traditional spectrum-based and mutation-based methods, deep learning-based methods are proposed to achieve better performance for fault localization. However, the existing methods ignore the deep seman-tic features or only consider simple code representations. They do not leverage the existing bug-related knowledge from large-scale open-source projects either. In addition, existing template-based program repair techniques can incorporate project specific information better than deep-learning approaches. However, they are weak in selecting the fix templates for efficient program repair. In this work, we propose a novel approach called TRANSFER, which lever-ages the deep semantic features and transferred knowledge from open-source data to improve fault localization and program repair. First, we build two large-scale open-source bug datasets and design 11 BiLSTM-based binary classifiers and a BiLSTM-based multi-classifier to learn deep semantic features of statements for fault localization and program repair, respectively. Second, we combine semantic-based, spectrum-based and mutation-based features and use an MLP-based model for fault localization. Third, the semantic-based features are leveraged to rank the fix templates for program repair. Our extensive experiments on widely-used benchmark De-fects4J show that TRANSFER outperforms all baselines in fault localization, and is better than existing deep-learning methods in automated program repair. Compared with the typical template-based work TBar, TRANSFER can correctly repair 6 more bugs (47 in total) on Defects4J.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Improving Fault Localization and Program Repair with Deep Semantic Features and Transferred Knowledge\",\"authors\":\"Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu\",\"doi\":\"10.1145/3510003.3510147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic software debugging mainly includes two tasks of fault lo-calization and automated program repair. Compared with the traditional spectrum-based and mutation-based methods, deep learning-based methods are proposed to achieve better performance for fault localization. However, the existing methods ignore the deep seman-tic features or only consider simple code representations. They do not leverage the existing bug-related knowledge from large-scale open-source projects either. In addition, existing template-based program repair techniques can incorporate project specific information better than deep-learning approaches. However, they are weak in selecting the fix templates for efficient program repair. In this work, we propose a novel approach called TRANSFER, which lever-ages the deep semantic features and transferred knowledge from open-source data to improve fault localization and program repair. First, we build two large-scale open-source bug datasets and design 11 BiLSTM-based binary classifiers and a BiLSTM-based multi-classifier to learn deep semantic features of statements for fault localization and program repair, respectively. Second, we combine semantic-based, spectrum-based and mutation-based features and use an MLP-based model for fault localization. Third, the semantic-based features are leveraged to rank the fix templates for program repair. Our extensive experiments on widely-used benchmark De-fects4J show that TRANSFER outperforms all baselines in fault localization, and is better than existing deep-learning methods in automated program repair. Compared with the typical template-based work TBar, TRANSFER can correctly repair 6 more bugs (47 in total) on Defects4J.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Fault Localization and Program Repair with Deep Semantic Features and Transferred Knowledge
Automatic software debugging mainly includes two tasks of fault lo-calization and automated program repair. Compared with the traditional spectrum-based and mutation-based methods, deep learning-based methods are proposed to achieve better performance for fault localization. However, the existing methods ignore the deep seman-tic features or only consider simple code representations. They do not leverage the existing bug-related knowledge from large-scale open-source projects either. In addition, existing template-based program repair techniques can incorporate project specific information better than deep-learning approaches. However, they are weak in selecting the fix templates for efficient program repair. In this work, we propose a novel approach called TRANSFER, which lever-ages the deep semantic features and transferred knowledge from open-source data to improve fault localization and program repair. First, we build two large-scale open-source bug datasets and design 11 BiLSTM-based binary classifiers and a BiLSTM-based multi-classifier to learn deep semantic features of statements for fault localization and program repair, respectively. Second, we combine semantic-based, spectrum-based and mutation-based features and use an MLP-based model for fault localization. Third, the semantic-based features are leveraged to rank the fix templates for program repair. Our extensive experiments on widely-used benchmark De-fects4J show that TRANSFER outperforms all baselines in fault localization, and is better than existing deep-learning methods in automated program repair. Compared with the typical template-based work TBar, TRANSFER can correctly repair 6 more bugs (47 in total) on Defects4J.