DeepNL:一个深度学习NLP管道

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1515
Giuseppe Attardi
{"title":"DeepNL:一个深度学习NLP管道","authors":"Giuseppe Attardi","doi":"10.3115/v1/W15-1515","DOIUrl":null,"url":null,"abstract":"We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"DeepNL: a Deep Learning NLP pipeline\",\"authors\":\"Giuseppe Attardi\",\"doi\":\"10.3115/v1/W15-1515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了一个用于自然语言处理的深度学习管道的架构。基于这个架构,我们构建了一组工具,用于创建分布向量表示和执行特定的NLP任务。有三种方法可用于创建嵌入:前馈神经网络、情感特定嵌入和基于计数和海灵格主成分分析的嵌入。提供了两种方法来训练网络执行序列标记,窗口方法和卷积方法。使用窗口方法实现POS标注器和NER标注器,使用卷积网络实现语义角色标注。该库是用Python实现的,核心数值处理用c++编写,使用并行线性代数库来提高效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepNL: a Deep Learning NLP pipeline
We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信