{"title":"DeepNL:一个深度学习NLP管道","authors":"Giuseppe Attardi","doi":"10.3115/v1/W15-1515","DOIUrl":null,"url":null,"abstract":"We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"DeepNL: a Deep Learning NLP pipeline\",\"authors\":\"Giuseppe Attardi\",\"doi\":\"10.3115/v1/W15-1515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. Two methods are provided for training a network to perform sequence tagging, a window approach and a convolutional approach. The window approach is used for implementing a POS tagger and a NER tagger, the convolutional network is used for Semantic Role Labeling. The library is implemented in Python with core numerical processing written in C++ using parallel linear algebra library for efficiency and scalability.