螺旋激光束在光束整形问题中的应用

E. Abramochkin, E. Razueva, V. Volostnikov
{"title":"螺旋激光束在光束整形问题中的应用","authors":"E. Abramochkin, E. Razueva, V. Volostnikov","doi":"10.1109/LFNM.2006.252042","DOIUrl":null,"url":null,"abstract":"Spiral beams are paraxial structurally stable rotating wavefields. For any planar curve there are such spiral beams, whose intensity shape is similar to the curve. The usage of Gerchberg-Saxton iterative algorithm and the initial data, based on spiral beam theory, provide an effective way for construction of specific vortical phase elements. These elements focus a homogeneous laser beam into the field with the intensity in the shape of a planar curve. Results of numerical simulation for some planar curves (a line segment, a circle, and a right triangle boundary) are presented","PeriodicalId":370622,"journal":{"name":"2006 International Workshop on Laser and Fiber-Optical Networks Modeling","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Spiral Laser Beams for Beam Shaping Problem\",\"authors\":\"E. Abramochkin, E. Razueva, V. Volostnikov\",\"doi\":\"10.1109/LFNM.2006.252042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiral beams are paraxial structurally stable rotating wavefields. For any planar curve there are such spiral beams, whose intensity shape is similar to the curve. The usage of Gerchberg-Saxton iterative algorithm and the initial data, based on spiral beam theory, provide an effective way for construction of specific vortical phase elements. These elements focus a homogeneous laser beam into the field with the intensity in the shape of a planar curve. Results of numerical simulation for some planar curves (a line segment, a circle, and a right triangle boundary) are presented\",\"PeriodicalId\":370622,\"journal\":{\"name\":\"2006 International Workshop on Laser and Fiber-Optical Networks Modeling\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Workshop on Laser and Fiber-Optical Networks Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LFNM.2006.252042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Workshop on Laser and Fiber-Optical Networks Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LFNM.2006.252042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

螺旋梁是近轴结构稳定的旋转波场。对于任何平面曲线都存在这样的螺旋梁,其强度形状与曲线相似。利用Gerchberg-Saxton迭代算法和基于螺旋束理论的初始数据,为构造特定的涡相元提供了有效的方法。这些元件将均匀的激光束聚焦到场中,其强度呈平面曲线形状。给出了几种平面曲线(线段、圆和直角三角形边界)的数值模拟结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Spiral Laser Beams for Beam Shaping Problem
Spiral beams are paraxial structurally stable rotating wavefields. For any planar curve there are such spiral beams, whose intensity shape is similar to the curve. The usage of Gerchberg-Saxton iterative algorithm and the initial data, based on spiral beam theory, provide an effective way for construction of specific vortical phase elements. These elements focus a homogeneous laser beam into the field with the intensity in the shape of a planar curve. Results of numerical simulation for some planar curves (a line segment, a circle, and a right triangle boundary) are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信