{"title":"某小型压水堆OTSG理论模型与RELAP5代码仿真的热对比分析","authors":"B. Jiang, Zhiwei Zhou, Z. Xia, Qian Sun","doi":"10.1115/icone2020-16281","DOIUrl":null,"url":null,"abstract":"\n Due to the low nuclear safety risk, low initial investment cost and short construction period, integrated small nuclear reactors have received wide attention from all over the world. As advanced new type of nuclear reactors, the technologies of integrated small nuclear reactors are in the process of exploration and development. Steam generators are used as the heat transfer system for energy exchange between the primary and secondary circuit in reactors, and their heat transfer analysis is very important for reactor design and development. Due to the simple structure, strong heat exchange capacity and timely load following, Once-Through Steam Generators (OTSGs) are the mainly used steam generators in the design of integrated small nuclear reactors.\n RELAP5/MOD4.0 is a commercial software developed by Innovative System Software, LLC for transient analysis of light water reactors (LWR). After years of development and improvement, RELAP5 has been a basic tool for analysis and calculation of various simulators of nuclear power plants. However, when RELAP5 models steam generators, only structural models related to straight pipes can be established, which is very inconvenient for the heat transfer research of Once-Through Steam Generators.\n In this paper, Once-Through Steam Generators with specified structural parameters are taken as the research object. The heat transfer calculation is performed on the simplified inclined tube models by RELAP5 code and the theoretical calculation of the spiral tube heat transfer models is also carried out. Comparing the steam outlet temperature on the primary and secondary sides, the heat exchange power, the average heat transfer coefficient and the tube length of different heat exchange zones under given primary and secondary side inlet fluid conditions, it is confirmed that the RELAP5 heat transfer calculation is verified for simplifying Once-Through Steam Generators with inclined tube models.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Thermal Analyses Between Theoretical Mode and RELAP5 Code Simulation for OTSG of a Small PWR\",\"authors\":\"B. Jiang, Zhiwei Zhou, Z. Xia, Qian Sun\",\"doi\":\"10.1115/icone2020-16281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Due to the low nuclear safety risk, low initial investment cost and short construction period, integrated small nuclear reactors have received wide attention from all over the world. As advanced new type of nuclear reactors, the technologies of integrated small nuclear reactors are in the process of exploration and development. Steam generators are used as the heat transfer system for energy exchange between the primary and secondary circuit in reactors, and their heat transfer analysis is very important for reactor design and development. Due to the simple structure, strong heat exchange capacity and timely load following, Once-Through Steam Generators (OTSGs) are the mainly used steam generators in the design of integrated small nuclear reactors.\\n RELAP5/MOD4.0 is a commercial software developed by Innovative System Software, LLC for transient analysis of light water reactors (LWR). After years of development and improvement, RELAP5 has been a basic tool for analysis and calculation of various simulators of nuclear power plants. However, when RELAP5 models steam generators, only structural models related to straight pipes can be established, which is very inconvenient for the heat transfer research of Once-Through Steam Generators.\\n In this paper, Once-Through Steam Generators with specified structural parameters are taken as the research object. The heat transfer calculation is performed on the simplified inclined tube models by RELAP5 code and the theoretical calculation of the spiral tube heat transfer models is also carried out. Comparing the steam outlet temperature on the primary and secondary sides, the heat exchange power, the average heat transfer coefficient and the tube length of different heat exchange zones under given primary and secondary side inlet fluid conditions, it is confirmed that the RELAP5 heat transfer calculation is verified for simplifying Once-Through Steam Generators with inclined tube models.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
集成化小型核反应堆因其核安全风险低、初期投资成本低、建设周期短等特点,受到了世界各国的广泛关注。整体式小型核反应堆作为一种先进的新型核反应堆,其技术正处于探索和发展的过程中。蒸汽发生器是反应堆一次回路和二次回路之间进行能量交换的传热系统,其传热分析对反应堆的设计和开发具有重要意义。直通式蒸汽发生器(otsg)由于结构简单、换热能力强、接负荷及时等优点,是一体化小型核反应堆设计中主要采用的蒸汽发生器。RELAP5/MOD4.0是由Innovative System software, LLC开发的用于轻水反应堆(LWR)瞬态分析的商业软件。RELAP5经过多年的发展和完善,已经成为核电站各种模拟器分析计算的基础工具。然而,RELAP5在对蒸汽发生器进行建模时,只能建立与直管相关的结构模型,这对直通式蒸汽发生器的传热研究非常不便。本文以具有特定结构参数的直通式蒸汽发生器为研究对象。利用RELAP5程序对简化后的斜管模型进行了传热计算,并对螺旋管传热模型进行了理论计算。通过对给定主、次侧进口流体条件下主、次侧蒸汽出口温度、换热功率、平均换热系数和不同换热区管长进行比较,验证了RELAP5换热计算方法对于简化斜管式直流式蒸汽发生器模型的有效性。
Comparative Thermal Analyses Between Theoretical Mode and RELAP5 Code Simulation for OTSG of a Small PWR
Due to the low nuclear safety risk, low initial investment cost and short construction period, integrated small nuclear reactors have received wide attention from all over the world. As advanced new type of nuclear reactors, the technologies of integrated small nuclear reactors are in the process of exploration and development. Steam generators are used as the heat transfer system for energy exchange between the primary and secondary circuit in reactors, and their heat transfer analysis is very important for reactor design and development. Due to the simple structure, strong heat exchange capacity and timely load following, Once-Through Steam Generators (OTSGs) are the mainly used steam generators in the design of integrated small nuclear reactors.
RELAP5/MOD4.0 is a commercial software developed by Innovative System Software, LLC for transient analysis of light water reactors (LWR). After years of development and improvement, RELAP5 has been a basic tool for analysis and calculation of various simulators of nuclear power plants. However, when RELAP5 models steam generators, only structural models related to straight pipes can be established, which is very inconvenient for the heat transfer research of Once-Through Steam Generators.
In this paper, Once-Through Steam Generators with specified structural parameters are taken as the research object. The heat transfer calculation is performed on the simplified inclined tube models by RELAP5 code and the theoretical calculation of the spiral tube heat transfer models is also carried out. Comparing the steam outlet temperature on the primary and secondary sides, the heat exchange power, the average heat transfer coefficient and the tube length of different heat exchange zones under given primary and secondary side inlet fluid conditions, it is confirmed that the RELAP5 heat transfer calculation is verified for simplifying Once-Through Steam Generators with inclined tube models.